Abstract:
A method of converting biological material into energy resources includes transmitting biological material to a pulsed electric field (PEF) station, and applying a PEF to the biological material within a treatment zone in the PEF station to generate treated biological material. The method also includes transmitting the treated biological material to a biogenerator, and processing the treated biological material in the biogenerator to produce an energy resource. A converter may carry out this process, and may include the PEF station and the biogenerator.
Abstract:
An electrode includes a plurality of fiber bundles. Each of the fiber bundles includes a plurality of individual fibers of different lengths with respect to an operation end of the electrode device. A screening ring is provided around the fiber bundles. The electrode may be used for example for generating corona discharge, which may be useful in liquid treatment.
Abstract:
A method of converting biological material into energy resources includes transmitting biological material to a pulsed electric field (PEF) station, and applying a PEF to the biological material within a treatment zone in the PEF station to generate treated biological material. The method also includes transmitting the treated biological material to a biogenerator, and processing the treated biological material in the biogenerator to produce an energy resource. A converter may carry out this process, and may include the PEF station and the biogenerator.
Abstract:
A method and apparatus for treating water or wastewater for drinking and/or industrial use. The method and apparatus comprises of a plurality of vertically positioned electrodes, which are placed in a treating chamber and wherein the electrodes are interconnected to one another. The positive and negative electrodes are insulated there-between. The polarity of the direct current supply is changeable at regular intervals in order to prevent passivation of the electrodes when reaching an even abrasion. The current can preferably be pulsatory. In order to be able to keep the current density between the electrodes at a desired value, the most efficient possible electrolysis is achieved by means of a minimum total current and wherein the spacing between the electrodes are adjustable.
Abstract:
This invention discloses the treatment of effluents in which a flow of the said effluents is subjected to a pulsed electric field that modifies physicochemical and biologic characteristics of the medium, this modification being used during a solid/liquid separation operation, of the settlement or membrane filtration type. The solid/liquid separation operation (13, 14, 15) and the application of a pulsed electric field (12) are operations carried out at different locations along the effluent flow. The pulsed electric field has voltage value, current value, pulse repetition frequency and voltage front shape characteristics chosen such that the required effluent treatment can be achieved as a function of the locations at which these membrane filtration operations are carried out and a pulsed electric field is applied.
Abstract:
An apparatus and method to treat a solution comprising ions in an ion removal step and an ion rejection step are provided. The apparatus comprises an electrochemical cell comprising a housing comprising first and second electrodes and a solution channel. A variable voltage supply is capable of maintaining the first and second electrodes at a plurality of different voltages during an ion exchange stage and a flow control device is capable of controlling the flow of solution through the channel of the cell. A controller is provided to control the voltage supply and flow control device. The ion removal step can comprise, for example, a deionization step and the ion rejection step can comprise, for example, a cell regeneration step.
Abstract:
A laminar or cyclonic particle separator for gas, liquid-liquid and fluidizable solids separation comprised of a section with a non-metallic housing having an annulus and a chamber, an optional anode cooled with a first coolant in and a first coolant out disposed in the chamber, a DC or pulsating DC power source connected to the anode, at least one magnetic coil disposed adjacent the chamber and cooled with a second coolant, a high voltage pulsating DC power source connected to the magnetic coil, and a fluid (gas, liquid or fluidizable solids) inlet port connected to the housing, and also a section with a non-metallic separator tube connected to the housing and disposed within the housing, a first fluid outlet connected to the annulus through the housing. This device can then separate a stream rich in a targeted element (first fluid) and a stream lean in a targeted element (second fluid) from the device and thus discharge a stream almost free of the targeted element or almost 100% the targeted element.
Abstract:
A system and method for removing contaminants from water. Water with contaminants is passed through a series of three electrochemical cells powered by a direct current source. The first and third electrochemical cells have anodes formed from a non-ferrous material, while the second electrochemical cell is formed from a ferrous material. The iron dissolved in the second cell acts as a flocculent and adsorptive for a variety of contaminants, while hydrogen peroxide and other oxidants formed in the electrochemical cells react with biological entities and other contaminants. The resulting insoluble materials are then filtered.
Abstract:
A method of treating of municipal sludge, paper-pulp sludge, animal and plant waste, and the like, whereby the treatment thereof via electroporation causes the breakdown of waste activated sludge, which is then recycled back to a bioreactor, or to one or more additional bioreactors such as aerobic, facultative, anoxic, or strictly anaerobic.
Abstract:
The invention relates to a method and a device for treating an aqueous solution, in which a pulsed electric field is generated in the aqueous solution between two electrodes. In accordance with the invention, at least one of the electrodes is covered with a layer of a dielectric material which, during operation of the device, completely separates this (these) electrode(s) from the aqueous solution. This measure in accordance with the invention enables field strengths to be used which are much higher than those permissible in the known devices. The use of an oxygen-containing gas and a bipolarly pulsed electric field leads to a further improvement of the method in accordance with the invention.