-
71.
公开(公告)号:US4388098A
公开(公告)日:1983-06-14
申请号:US352568
申请日:1982-02-26
Applicant: Shiro Takahashi , Kazuo Sanada , Koichi Inada , Osamu Fukuda
Inventor: Shiro Takahashi , Kazuo Sanada , Koichi Inada , Osamu Fukuda
IPC: C03B37/014 , C03B37/018 , C03C13/04 , B01J10/00
CPC classification number: C03C13/046 , C03B37/01413 , C03B37/0142 , C03B37/01807 , C03B2201/30 , C03B2201/34 , C03B2201/50 , C03B2201/54 , C03B2203/22 , C03B2203/26 , C03B2207/06 , C03B2207/08 , C03B2207/20 , C03B2207/28 , C03B2207/32 , C03B2207/34 , C03B2207/40
Abstract: An apparatus for producing a multi-component glass fiber preform includes a multi-conduit burner 31 having five concentric conduits 31a-31e, the center three conduits (a), (b) and (c) being flush with each other at their ends, the fourth conduit d, interposed between the third (c) and outermost conduit (e) extends axially beyond the first three. The burner has a flange 33 to direct the flame onto a substrate.In operation glass raw material is fed through the inner-most conduit (a) by a carrier gas. The material emitted from conduits (a -d) is mixed in a mixing area 32. Glass raw material and a nebulized dopant salt solution are emitted and burned with hydrogen gas depositing particulate glass material or soot on an adjacent substrate to produce a multi-component glass fiber preform.
-
72.
公开(公告)号:US4313748A
公开(公告)日:1982-02-02
申请号:US123979
申请日:1980-02-25
Applicant: Pedro B. Macedo , Theodore A. Litovitz
Inventor: Pedro B. Macedo , Theodore A. Litovitz
IPC: C03B37/016 , C03C13/00 , C03C13/04 , C03C23/00 , G02B6/02 , G02B6/028 , C03B32/00 , C03C17/10 , C03C17/25
CPC classification number: G02B6/02 , C03B37/016 , C03C13/00 , C03C13/046 , C03C23/0095 , C03B2201/10 , C03B2201/30 , C03B2201/32 , C03B2201/34 , C03B2201/50 , C03B2201/54 , Y02P40/57
Abstract: The present invention relates to a new glass material applicable in those situations where thermal and/or mechanical shock would limit the use of other glass materials presently available. Dopants are deposited into the interconnected pores of a porous glass in a non-uniform manner such that upon consolidation and cooling the final article has its surface under compressive stress. Dopants may also be added to control color and other appearance features. A porous silicate glass is washed with sodium hydroxide followed by immersing the washed glass in a liquid solution of a dopant in a liquid solvent therefor to stuff the pores of the washed glass with the solution. Thereafter, the solvent is removed from the pores and the pores are collapsed by a heating step.
Abstract translation: 本发明涉及适用于热和/或机械冲击将限制目前可获得的其它玻璃材料的使用的情况下的新型玻璃材料。 掺杂剂以不均匀的方式沉积在多孔玻璃的互连孔中,使得在固结和冷却时,最终制品的表面处于压应力下。 还可以添加掺杂剂以控制颜色和其它外观特征。 用氢氧化钠洗涤多孔硅酸盐玻璃,然后将洗涤后的玻璃浸在液体溶剂中的掺杂剂的液体溶液中,以用溶液填充经过洗涤的玻璃的孔。 此后,从孔中除去溶剂,通过加热步骤将孔压缩。
-
公开(公告)号:US3981707A
公开(公告)日:1976-09-21
申请号:US570713
申请日:1975-04-23
Applicant: Roger J. Araujo , Nicholas F. Borrelli , John D. Crow , Thomas P. Seward, III
Inventor: Roger J. Araujo , Nicholas F. Borrelli , John D. Crow , Thomas P. Seward, III
IPC: B29D11/00 , C03B37/012 , C03B37/027 , C03C3/089 , C03C3/091 , C03C23/00 , G02B6/028 , C03C25/02 , C03C15/00 , G02B5/14 , G02B21/34
CPC classification number: G02B6/0288 , B29D11/00682 , C03B37/01225 , C03B37/02754 , C03C23/00 , C03C3/089 , C03C3/091 , C03B2201/12 , C03B2201/14 , C03B2201/30 , C03B2201/32 , C03B2201/50 , C03B2203/22 , C03B2205/16 , Y10S65/16
Abstract: A fluorine containing silicate glass substrate is heated to a temperature sufficiently high to permit fluorine to out-diffuse from the surface thereof. A surface region is formed having a gradient fluorine concentration in a direction perpendicular to the substrate surface, the region of lowest fluorine concentration having the highest refractive index. The resultant device is capable of functioning as an optical waveguide.
Abstract translation: 将含氟硅酸盐玻璃基板加热到足够高的温度以使氟从其表面扩散。 在垂直于衬底表面的方向,具有最高折射率的最低氟浓度的区域中形成具有梯度氟浓度的表面区域。 所得到的器件能够用作光波导。
-
公开(公告)号:US3941474A
公开(公告)日:1976-03-02
申请号:US147256
申请日:1971-05-26
Applicant: Ichiro Kitano , Ken Koizumi , Hiroyoshi Matsumura
Inventor: Ichiro Kitano , Ken Koizumi , Hiroyoshi Matsumura
IPC: C03B37/023 , C03B37/025 , C03B37/027 , C03C13/04 , C03C21/00 , G02B1/00 , G02B6/00 , G02B6/02 , G02B6/028 , G02B6/12 , G02B5/14
CPC classification number: G02B6/0281 , C03B37/023 , C03B37/027 , C03C21/00 , G02B6/02 , G02B6/02042 , C03B2201/30 , C03B2201/50 , C03B2203/22 , C03B2203/34 , G02B2006/12183
Abstract: By heat treating a glass member containing at least one kind of cation to constitute a modifying oxide in contact with a source of another kind of cation to cause ion substitution, a light-conducting glass structure can be produced to have a refractive index distribution wherein the index varies progressively transversely to the intended light path, which is thereby bent toward the direction of increase of the index, such a light-conducting glass structure is not accompanied by differences or lagging of phase velocities of conducted light rays, spreading of the light flux width, and reflection losses.
Abstract translation: 通过对含有至少一种阳离子的玻璃构件进行热处理以构成与另一种阳离子的源接触的改性氧化物以引起离子取代,可以制造导光玻璃结构以具有折射率分布,其中, 折射率随预期光路逐渐变化,从而朝着折射率增加的方向弯曲,这样的导光玻璃结构不伴随传导光线的相速度的差异或滞后,光通量的扩展 宽度和反射损失。
-
75.
公开(公告)号:US3877783A
公开(公告)日:1975-04-15
申请号:US86124769
申请日:1969-09-26
Applicant: NIPPON SELFOC CO LTD
Inventor: MATSUMURA HIROYOSHI , ONO SEIICHI
IPC: C03B37/023 , C03B37/027 , C03B37/029 , C03C21/00 , G02B6/028 , G02B5/14
CPC classification number: G02B6/0281 , C03B37/023 , C03B37/027 , C03B37/02718 , C03B37/029 , C03B2201/30 , C03B2201/50 , C03B2203/06 , C03B2203/22 , C03B2205/02 , C03B2205/55 , C03B2205/56 , C03C21/00 , C03C21/001
Abstract: A light-conducting glass structure, the refractive index of which in each cross section perpendicular to the centre line or plane along which light is to advance of the structure decreases progressively from the centre line or plane toward the outer surface of the structure, and the rate of decreasing the refractive index is smaller at the vicinity of at least either end surface being transverse to the centre line or plane than that in the other part of the glass structure. The decrease of refractive index occurs by varying the concentration within the glass structure of at least two kinds of cations (They differ from each other in their contributions to increasing of refractive index.) constituting modifying oxides. The rate of decreasing refractive index at the vicinity of at least either end surface of the glass structure is made to carry out by such a manner that the cation within the glass structure (Which is either of at least two kinds of cations mentioned above and has higher contributions to the increase of refractive index than that of the other.) is substituted by another cation from an external cation source in a greater extent, or a stretching ratio of a part to be an end surface of the glass structure having a certain rate of decreasing refractive index is adjusted to be smaller.
Abstract translation: 导光玻璃结构的折射率在垂直于结构的光的中心线或平面的每个横截面中的折射率逐渐从中心线或平面朝向结构的外表面逐渐减小,并且 在至少任一端面的附近,折射率的降低率比玻璃结构的其他部分横向于中心线或平面的距离更小。 折射率的降低通过改变构成改性氧化物的至少两种阳离子(它们彼此不同于它们对折射率增加的贡献)的玻璃结构内的浓度而发生。 使玻璃结构的至少任一端面附近的折射率降低的速率通过使玻璃结构内的阳离子(其为上述至少两种阳离子,并且具有 对折射率增加的贡献高于另一个)由外部阳离子源的另一阳离子被更大程度地取代,或者具有一定速率的作为玻璃结构的端面的部分的拉伸比 降低折射率被调整为更小。
-
公开(公告)号:US20240230986A1
公开(公告)日:2024-07-11
申请号:US18613402
申请日:2024-03-22
Applicant: FURUKAWA ELECTRIC CO., LTD.
Inventor: Kazunori MUKASA
IPC: G02B6/02 , C03B37/012 , C03B37/014 , C03B37/027
CPC classification number: G02B6/02395 , C03B37/01211 , C03B37/014 , C03B37/027 , C03B2201/31 , C03B2201/50 , C03B2203/22
Abstract: An optical fiber includes: a core portion including a center core doped with germanium; and a cladding portion having a refractive index lower than a maximum refractive index of the core portion and surrounding an outer periphery of the core portion. The cladding portion has a relative refractive index difference of a positive value equal to or lower than 0.1% with respect to pure silica glass, an alkali metal element is doped in the center core to be diffused, and a peak of a concentration distribution of the alkali metal element in a radial direction is positioned at a distance away from the center of the center core by two times or more a radius of the center core.
-
公开(公告)号:US20230322605A1
公开(公告)日:2023-10-12
申请号:US18019538
申请日:2021-08-27
Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
Inventor: Hirotaka SAKUMA , Yuki KAWAGUCHI
IPC: C03B37/012 , C03B37/014
CPC classification number: C03B37/01211 , C03B37/01228 , C03B37/014 , C03B2201/12 , C03B2201/20 , C03B2201/50 , C03B2203/22
Abstract: A method for manufacturing an optical fiber preform made of silica-based glass, the method including: forming a core portion; and forming a cladding portion surrounding the core portion, the cladding portion having a refractive index lower than a refractive index of the core portion, wherein the forming the core portion includes: adding an alkali element group consisting of an alkali metal element and an alkaline earth metal element to an inner surface of a glass pipe made of silica-based glass; and integrating the glass pipe and a glass rod disposed inside the glass pipe to form an integrated rod after the adding.
-
公开(公告)号:US20230212057A1
公开(公告)日:2023-07-06
申请号:US18183385
申请日:2023-03-14
Applicant: FURUKAWA ELECTRIC CO., LTD.
Inventor: Kazunori MUKASA , Zoltan VARALLYAY , Bence NEMETH , Bela CSENGERI , Zsolt PUSKAS , Peter SZELESTEY , Gabor VARGA
IPC: C03B37/027 , C03C25/106 , G02B6/02
CPC classification number: C03B37/02772 , C03C25/106 , G02B6/02395 , C03B2205/47 , C03B2205/10 , C03B2205/62 , C03B2201/12 , C03B2201/50 , C03B2201/31
Abstract: An optical fiber manufacturing method includes: a drawing step of heating one end portion of an optical fiber preform to melt and deform the one end portion and drawing an optical fiber, wherein in the drawing step, drawing is performed while applying pressure to a melted-deformed portion that is melted and deformed.
-
公开(公告)号:US09932265B2
公开(公告)日:2018-04-03
申请号:US15351782
申请日:2016-11-15
Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
Inventor: Tetsuya Haruna , Masaaki Hirano , Yoshiaki Tamura , Tetsuya Nakanishi
IPC: C03C3/06 , G02B6/02 , C03C13/04 , C03B37/027
CPC classification number: C03C13/046 , C03B37/02727 , C03B2201/50 , C03B2205/55 , C03B2205/56 , C03C3/06 , C03C13/045 , C03C2201/21 , C03C2201/23 , C03C2201/50 , C03C2203/54 , G02B6/02395 , Y02P40/57
Abstract: There is provided a method for producing a low-loss alkali metal-doped silica core optical fiber having excellent hydrogen resistance. The method for producing the optical fiber according to the present invention includes a drawing step of drawing an optical fiber preform in a drawing furnace to produce a silica glass-based optical fiber including a core region containing an alkali metal with an average concentration of 0.5 atomic ppm or more and a cladding region that surrounds the core region and a heating step of heating the optical fiber in a heating furnace through which the optical fiber drawn from the drawing furnace passes.
-
公开(公告)号:US09932260B2
公开(公告)日:2018-04-03
申请号:US15337591
申请日:2016-10-28
Applicant: Corning Incorporated
Inventor: Kenneth Duane Billings , Dana Craig Bookbinder , Paul Andrew Chludzinski , Robert Clark Moore , Pushkar Tandon
IPC: C03B37/027 , C03B37/025 , G02B6/036 , C03C25/10 , G02B6/02
CPC classification number: C03B37/02718 , C03B37/0253 , C03B37/02727 , C03B37/029 , C03B37/032 , C03B2201/02 , C03B2201/12 , C03B2201/20 , C03B2201/31 , C03B2201/50 , C03B2203/224 , C03B2203/24 , C03B2203/26 , C03B2205/42 , C03B2205/44 , C03B2205/55 , C03B2205/56 , C03B2205/60 , C03C25/106 , G02B6/02004 , G02B6/02009 , G02B6/0281 , G02B6/03622 , G02B6/03627 , G02B6/03633 , G02B6/03694
Abstract: According to some embodiments a method of processing an optical fiber comprises the steps of: (i) drawing the fiber at a drawing rate of at least 30 m/sec; and (ii) cooling the drawn fiber in a gas at an average cooling rate less than 5000° C./s, such that said cooling reduces the temperature of the fiber from an entering temperature in the range between 1500° C. and 1700° C. to another temperature in the range between 1200° C. and 1400° C., the gas being at a temperature between 800° C. and 1500° C.; and the thermal conductivity κ of the gas being not greater than 1.5×10−4 cal/cm-s-K for at least one temperature within a range of 800° C. to 1500° C. at one atm (atmosphere) pressure absolute.
-
-
-
-
-
-
-
-
-