Abstract:
Polymeric porous particles have a continuous solid phase and at least two sets of discrete pores that are isolated from each other within the continuous phase and that have different average sizes. One set of discrete pores has a larger average size than another set of discrete pores by at least 50%. At least one set of discrete pores is free of detectably different marker materials. There porous particles can be prepared using evaporative limited coalescence techniques with especially chosen discrete pore stabilizing hydrocolloids to protect the pores during formation and to provide the different average sizes.
Abstract:
The present invention relates to a process for producing porous materials, which comprises reaction of at least one polyfunctional isocyanate with at least one polyfunctional aromatic amine in the presence of at least one catalyst and a solvent. The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as insulation material, in particular for applications in the building sector and in vacuum insulation panels.
Abstract:
Porous polymer nanocomposites with controllable distribution/dispersion of components are provided. These nanocomposites are useful for various applications, such as flexible 3D electrodes for batteries, flexible sensors and conductors and the like. Also provided are emulsion compositions and methods for preparing the porous polymer nanocomposites.
Abstract:
Disclosed herein is a method of preparing a nanoporous organic-inorganic hybrid film. The method includes preparing an organic sol including a compound having amino groups, a compound having isocyanate groups, and a solvent; adding an inorganic oxide precursor to the organic sol to form a mixed solution; and subjecting the mixed solution to heat treatment to form an organic molecule network structure in which the organic sol is gelled, and an inorganic molecule network structure located along a surface of the organic molecule network structure.
Abstract:
Methods for making polymer particles in gel form via an emulsion and/or suspension polymerization are provided. In at least one specific embodiment, the method can include reacting a first reaction mixture comprising a phenolic monomer, an aldehyde monomer, and a first catalyst to produce a prepolymer. The method can also include combining the prepolymer with a carrier fluid and a second catalyst to produce a second reaction mixture. The second catalyst can include a dicarboxylic acid, an anhydride, a dihydroxybenzene, or any mixture thereof. The method can also include polymerizing the prepolymer to form polymer particles in gel form.
Abstract:
An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material, and linear organo-amine polymeric materials having an Mw from about 160 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material. This disclosure also relates to processes for preparing the crosslinked and linear organo-amine materials, as well as to selective removal of CO2 and/or other acid gases from a gaseous stream using the adsorption-desorption materials.
Abstract:
Disclosed and claimed herein are hybrid aerogels which are compositions of tetraalkoxysilanes and bis-(trialkoxysilyl)imides that exhibit low thermal conductivities and high compressive strengths. Methods for their preparation are also provided.
Abstract:
Disclosed and claimed herein are hybrid aerogels which are compositions of tetraalkoxysilanes and bis-(trialkoxysilyl) imides that exhibit low thermal conductivities and high compressive strengths. Methods for their preparation are also provided.
Abstract:
A functional TFE copolymer fine powder is described, wherein the TFE copolymer is a polymer of TFE and at least one functional comonomer, and wherein the TFE copolymer has functional groups that are pendant to the polymer chain. The functional TFE copolymer fine powder resin is paste extrudable and expandable. Methods for making the functional TFE copolymer are also described. The expanded functional TFE copolymer material may be post-reacted after expansion.
Abstract:
Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties. Various properties of such networks of polyurethane particles (e.g., strength, stiffness, flexibility, thermal conductivity) may be tailored depending on which monomers are provided in the reaction.