Abstract:
A method of synthesizing aerogels and cross-linked aerogels in a single step and in a single pot without requiring any solvent exchange is described. Porous matrices are synthesized through a modification of hydrolysis condensation of alkoxides in which addition of water is minimized. The reaction occurs in an ethanol-water azeotrope mixture; the water in the azeotrope slowly hydrolyzes the alkoxide. Additionally, after gelation, the porous matrix is dried in supercritical ethanol rather than liquid CO2, which allows for elimination of solvent exchange steps. These modifications allow for the preparation of aerogel monoliths in any size in one step and in one pot and much faster than conventional procedures. In addition, the method provides for custom aerogel parts with large dimensions, as well as high volume fabrication of aerogels. The custom aerogel parts may be used in a variety of thermal insulation applications.
Abstract:
A nanofibrous spongy microsphere includes porous walls that define an exterior of the microsphere and that extend through an interior of the microsphere. The porous walls consist of interconnected nanofibers and spaces formed between the interconnected nanofibers. A plurality of micro-scale pores are formed throughout the interior of the microsphere. Each of the micro-scale pores i) is partially defined by the porous walls, ii) has an interpore opening that opens to an adjacent micro-scale pores, and iii) has a diameter ranging from about 1 μm to about 100 μm. A total diameter of the microsphere ranges from about 5 μm to about 1000 μm.
Abstract:
Micro-sized particles having a polymeric structure of cells are provided. Also provided is a method of producing micro-sized particles having a polymeric structure comprising: (1) forming a homogenous solution by heating a mixture of a high molecular weight polymer and a low molecular weight material, wherein said low molecular weight material makes up at least about 50% by weight of the homogenous solution, (2) forming a dispersed solution by dispersing the homogenous solution formed in step (1) into an inert material, (3) cooling the dispersed solution to cause the high molecular weight polymer to phase separate from the low molecular weight material, (4) forming solid particles comprised of said low molecular weight material trapped inside a structure of cells of said high molecular weight polymer, and (5) removing the solid particles from the dispersed solution.
Abstract:
The present invention discloses a method for preparing a microporous polyolefin film comprising: a step of injecting a composition comprising polyolefin 30 to 60 wt % and a diluent mixture comprising a diluent, which can make liquid-liquid phase separation with the polyolefin thermodynamically 40 to 70 wt %, into an extruding machine, and melting and kneading thereof to prepare a single phase melt; and a step of extruding the melt while conducting liquid-liquid phase separation by passing through a section having the temperature below the liquid-liquid phase separation temperature and forming thereof in the form of a sheet, and a microporous polyolefin film prepared according to the method.
Abstract:
There is provided a porous formed article which can remove hazardous substances at a high speed, has a high adsorption capacity and has high durability to cleaning chemicals and further which is scarcely broken even if being repeatedly used, and which contains an organic polymeric resin and an inorganic ion-adsorbing material, wherein the organic polymeric resin is a polyether sulfone resin and/or a polysulfone resin, and is an organic polymeric resin having a hydroxyl group.
Abstract:
Method of making a polymer matrix composite comprising a porous polymeric network structure; and a plurality of particles distributed within the polymeric network structure, the method comprising: combining a thermoplastic polymer, a solvent that the thermoplastic polymer is soluble in, and a plurality of particles to provide a slurry; forming the slurry in to an article; heating the article in an environment to retain at least 90 percent by weight of the solvent, based on the weight of the solvent in the slurry, and inducing phase separation of the thermoplastic polymer from the solvent to provide the polymer matrix composite.
Abstract:
A polymer matrix composite includes a porous polymeric network structure; and a plurality of acoustically active particles distributed within the polymeric network structure. The weight fraction of acoustically active particles is between 0.80 and 0.99, based on the total weight of the polymer matrix composite. The polymer matrix composite has an air flow resistance of less than 100 seconds/50 mL/500 μm.
Abstract:
Disclosed herein is a method of preparing a nanoporous organic-inorganic hybrid film. The method includes preparing an organic sol including a compound having amino groups, a compound having isocyanate groups, and a solvent; adding an inorganic oxide precursor to the organic sol to form a mixed solution; and subjecting the mixed solution to heat treatment to form an organic molecule network structure in which the organic sol is gelled, and an inorganic molecule network structure located along a surface of the organic molecule network structure.
Abstract:
A nanofibrous spongy microsphere includes porous walls that define an exterior of the microsphere and that extend through an interior of the microsphere. The porous walls consist of interconnected nanofibers and spaces formed between the interconnected nanofibers. A plurality of micro-scale pores are formed throughout the interior of the microsphere. Each of the micro-scale pores i) is partially defined by the porous walls, ii) has an interpore opening that opens to an adjacent micro-scale pores, and iii) has a diameter ranging from about 1 μm to about 100 μm. A total diameter of the microsphere ranges from about 5 μm to about 1000 μm.
Abstract:
Micro-sized particles having a polymeric structure of cells are provided. Also provided is a method of producing micro-sized particles having a polymeric structure comprising: (1) forming a homogenous solution by heating a mixture of a high molecular weight polymer and a low molecular weight material, wherein said low molecular weight material makes up at least about 50% by weight of the homogenous solution, (2) forming a dispersed solution by dispersing the homogenous solution formed in step (1) into an inert material, (3) cooling the dispersed solution to cause the high molecular weight polymer to phase separate from the low molecular weight material, (4) forming solid particles comprised of said low molecular weight material trapped inside a structure of cells of said high molecular weight polymer, and (5) removing the solid particles from the dispersed solution.