Abstract:
A method and apparatus for the removal of hazardous and waste materials of low heat content, for example, refuse, by means of combustion wherein the combustion process is carried out in a furnace by the presence of added hot combustion air at a temperature sufficient so that the combustion and/or flue gas temperatures are at least 1250.degree. C. In a preferred embodiment of the invention, the combustion process is combined with a process for the production of cement clinker and carried out parallel to the same, wherein air at about 800.degree. C. is branched off for combustion of the hazardous substances from the cooler air of the cement clinker installation and introduced into the furnace. The hot flue gas of the combustion in the furnace is directed into the cement clinker installation. The invention further contemplates that calcium-containing carbonate carriers can be added to the refuse.
Abstract:
A process for the purification of gas, which is generated in pressure gasification of coal, which uses a wash oil, especially tar oil, as the washing liquid to avoid clogging of the washing apparatus by tars and tar compounds which precipitate out of the washing liquid when water or aqueous solutions are employed as the washing liquid. The wash oil is preferably used in the circulation, from which solids and tars are continuously removed, and is then fed into the pressure reactor again. The wash oil circulation is continually regenerated through distillation, and the residues are fed into the pressure reactor. Heat is constantly extracted from the gas before or during the washing in a heat exchange process, making it possible to keep the heat loss extremely low and to create optimum temperature at every point of the total cycle by appropriate extraction or addition of heat. The heat extracted may be used for generation of steam, which is fed into the pressure reactor, into the distillation process for the regeneration and purification of the wash oil, and/or into the discharging flow of purified gas. The gas is also desirably brought into contact with separating materials, such as alkali, earth alkali, dolomite, etc., for the purpose of separating hydrogen sulfide.
Abstract:
Temperature control is often a problem in direct-fired rotary kilns for the pyrolysis of carbonaceous materials wherein at least part of the thermal energy for pyrolysis is obtained by in situ combustion of the pyrolysis gases. The present process and apparatus provides a means by which temperature control, and particularly reduction in intensity of the fireball at the burner end of the kiln and/or moving the fireball away from the burner hood. This is accomplished by (1) controlling the velocity of any burner gases and the velocity of the in situ air (or other oxygen-containing gas) and (2) the distribution of the in situ air at the burner end of the kiln, such that a Craya-Curtet number of at least 0.2, and preferably at least 0.4, is obtained. In a preferred embodiment, the in situ air is admitted into the burner hood from a plenum chamber disclosed circumferentially around at least a portion of the kiln, the air entering the burner hood through the annulus defined between the outer shell of the kiln and the burner hood.
Abstract:
Municipal waste is converted into high energy fuel gas by pyrolyzing same in a pyrolysis reaction zone, the heat energy required for such endothermic pyrolysis reaction being transferred from an exothermic reaction zone. Both reaction zones comprise a bed of fluidized inert solids, and the heat of pyrolysis is transferred by circulating therebetween the fluidized inert solids.
Abstract:
The invention provides a pyrolysis reaction system, the system comprising: a pyrolysis chamber comprising a feed inlet, a gas inlet and a product outlet, wherein the pyrolysis chamber is configured i) to receive a pyrolysable organic feed and an inert gas via the feed inlet and gas inlet respectively, ii) to pyrolyse the organic feed at a pyrolysis temperature to produce a carbonaceous pyrolysis product and a pyrolysis gas, wherein the pyrolysis gas will combine with the inert gas to form a gas mixture having a pyrolysis chamber pressure in the pyrolysis chamber, and iii) to discharge the carbonaceous pyrolysis product via the product outlet; a gas reactor configured to react the pyrolysis gas by combustion and/or carbon deposition at a gas reaction temperature and a gas reactor pressure; and a first partition defining a boundary between the pyrolysis chamber and the gas reactor, the first partition comprising a plurality of first apertures to provide fluid communication between the pyrolysis chamber and the gas reactor, wherein the pyrolysis reaction system is operable with the gas reactor pressure less than the pyrolysis chamber pressure such that the gas mixture flows from the pyrolysis chamber to the gas reactor through the first apertures, thereby providing at least a portion of the pyrolysis gas for reaction in the gas reactor.
Abstract:
In a method for physical and thermochemical treatment of biomass, the biomass moisture content is reduced in a dryer and ammonia (NH3) is also released from the biomass during drying. The dried biomass is then either pyrolyzed in a pyrolysis reactor and the pyrolysis gas is forwarded to and combusted in a combustion device to form flue gas, or is combusted in a combustion facility unit to form flue gas. In either case the flue gas is fed to a mixer. Oxygen (O2) is metered to the flue gas in the mixer and is fed directly to the dryer as drying gas. As the drying gas passes through the dryer, the sulfur dioxide (SO2) contained in the drying gas and/or the sulfur trioxide (SO3) chemically reacts with the ammonia (NH3) to form ammonium sulfite ((NH4)2SO3) and/or ammonium sulfate ((NH4)2SO4). Also a treatment facility physically and thermochemically treats the biomass.
Abstract:
A pyrolysis waste-to-energy conversion system has a muffle furnace housing a rotating retort drum within the furnace and having an inlet sleeve and an outlet sleeve extending through inlet and outlet ends of the muffle furnace. A rotating retort drum drive applies rotary drive to the inlet rotating retort drum sleeves and an in-feed auger is within a tube within the inlet sleeve. An out-feed auger is within a tube within the outlet sleeve and arranged to deliver char and pyrolysis syngas to a char processing system and a syngas processing system. The inlet sleeve and said outlet sleeve are arranged to provide a gas seal to prevent air ingress or syngas egress to and from the rotating retort drum. A gas cleaning system has a cracking tower arranged to retain inlet gas at an elevated temperature for a residence time, and a gas quench and scrubber system.
Abstract:
The present disclosure provides a burner for a reduction reactor, the reduction reactor has a reaction space formed therein, wherein each burner has a fuel feeding hole and multiple oxygen feeding holes formed therein, wherein each burner has an elongate combustion space formed at one end of a head portion thereof, the combustion space fluid-communicating with the reaction space of the reactor, wherein the elongate combustion space has a length such that oxygen supplied from the oxygen feeding holes thereto is completely consumed via oxidation or combustion with fuels supplied from the fuel feeding hole thereto only in the elongate combustion space upon igniting the burner.
Abstract:
The present invention provides a hospital waste plasma incinerator that has a following features. It is composed of a main body having an inlet and a cap for opening and closing the inlet, a pyrolysis incinerator for receiving the hospital waste that is disposed in the interior of the main body and connected with the inlet, a plasma flame generator installed inside the main body and generating a plasma flame toward the pyrolysis incinerator, a complete combustion device which is installed in the main body and completely burns the smoke and the odor generated due to the incineration with a plasma flame of 1,500 to 3,000° C., a complete combustion exhaust device connected to the complete combustion device to exhaust the combustion gas, and the cooling device for cooling the combustion gas.
Abstract:
A method and system for cost effectively converting a feedstock using thermal plasma, or other styles of gassifiers, into a feedwater energy transfer system. The feedstock can be any organic material, or fossil fuel. The energy transferred in the feedwater is converted into steam which is then injected into the low turbine of a combined cycle power plant. Heat is extracted from gas product issued by a gassifier and delivered to a power plant via its feedwater system. The gassifier is a plasma gassifier and the gas product is syngas. In a further embodiment, prior to performing the step of extracting heat energy, there is provided the further step of combusting the syngas in an afterburner. An air flow, and/or EGR flow is provided to the afterburner at a rate that is varied in response to an operating characteristic of the afterburner. The air flow to the afterburner is heated.