Abstract:
Superconducting nanowire avalanche photodetectors (SNAPs) have using meandering nanowires to detect incident photons. When a superconducting nanowire absorbs a photon, it switches from a superconducting state to a resistive state, producing a change in voltage that can be measured across the nanowire. A SNAP may include multiple nanowires in order to increase the fill factor of the SNAP's active area and the SNAP's detection efficiency. But using multiple meandering nanowires to achieve high fill-factor in SNAPs can lead to current crowding at bends in the nanowires. This current crowding degrades SNAP performance by decreasing the switching current, which the current at which the nanowire transitions from a superconducting state to a resistive state. Fortunately, staggering the bends in the nanowires reduces current crowding, increasing the nanowire switching current, which in turn increases the SNAP dynamic range.
Abstract:
Mapping apparatus includes a transmitter, which emits a beam comprising pulses of light, and a scanner, which is configured to scan the beam, within a predefined scan range, over a scene. A receiver receives the light reflected from the scene and to generate an output indicative of a time of flight of the pulses to and from points in the scene. A processor is coupled to control the scanner so as to cause the beam to scan over a selected window within the scan range and to process the output of the receiver so as to generate a 3D map of a part of the scene that is within the selected window.
Abstract:
A silicon photomultiplier array of microcells including a photon avalanche diode and an electronic circuit configured to provide a first one-shot pulse and a second one-shot pulse based on a detected current flowing through the photon avalanche diode. The microcells arranged in rows and columns with each microcell of a respective row connected to a respective row data bus connected to a row counter configured to count one or more first one-shot pulses for a predetermined time period, a pixel adder configured to sum the count, and a digital-to-analog converter connected to the pixel adder to convert sum to an analog signal representative of an energy readout. A timing logic circuit configured to provide a validation signal to a counter control logic circuit, and the counter control logic circuit configured to provide one of a start signal, a stop signal, and a reset signal to the row counter.
Abstract:
An optoelectronic module includes a micro-optical substrate and a beam transmitter, including a laser die mounted on the micro-optical substrate and configured to emit at least one laser beam along a beam axis. A receiver includes a detector die mounted on the micro-optical substrate and configured to sense light received by the module along a collection axis of the receiver. Beam-combining optics are configured to direct the laser beam and the received light so that the beam axis is aligned with the collection axis outside the module.
Abstract:
A method for designing a completely passive bias compensation circuit to stabilize the gain of multiple pixel avalanche photo detector devices. The method includes determining circuitry design and component values to achieve a desired precision of gain stability. The method can be used with any temperature sensitive device with a nominally linear coefficient of voltage dependent parameter that must be stabilized. The circuitry design includes a negative temperature coefficient resistor in thermal contact with the photomultiplier device to provide a varying resistance and a second fixed resistor to form a voltage divider that can be chosen to set the desired slope and intercept for the characteristic with a specific voltage source value. The addition of a third resistor to the divider network provides a solution set for a set of SiPM devices that requires only a single stabilized voltage source value.
Abstract:
The objective of the present invention is to quickly and precisely correct the measured value for light reception power to the actual value with few resources, by installing a correction device for a light reception power monitor for signal light in an optical module. The correction device is equipped with a correction table which is referenced when correcting the measured value for the light reception power of signal light, and in this correction table multiple correction values are stored in advance on the basis of the correspondence relationships between multiple reference values and multiple actual values. In the correction table, for segments wherein the change in the actual values with respect to the change in the measured values is small, the interval between the reference values is made smaller and more correction values are stored than for segments wherein the change in the actual values with respect to the change in the measured values is large. When an input value indicating the measured value for the light reception power of the signal light matches a reference value in the correction table, the correction device reads from the correction table the correction value corresponding to the reference value. When an input value does not match a reference value in the correction table, the correction device calculates a correction value in accordance with a prescribed calculation formula on the basis of the input value.
Abstract:
Photomultipliers are disclosed which comprise circuitry for detecting photo electric events and generating short digital pulses in response. In one embodiment, the photomultipliers comprise solid state photomultipliers having an array of microcells. The microcells, in one embodiment, in response to incident photons, generate a digital pulse signal having a duration of about 2 ns or less.
Abstract:
The present invention relates to a single photon detector (SPD) at telecom wavelength of 1.55 μm based on InGaAs/InP avalanche photodiode (APD). In order to operate the SPD at a low after-pulse noise, a DC bias voltage lower than the breakdown voltage is applied to an InGaAs/InP APD. A bipolar rectangular gating signal is superimposed with the DC bias voltage and applied to the APD so as to exceed the breakdown voltage during the gate-on time of each period of the gate signal. The use of the bipolar rectangular gating signal enabling us to operate the APD well below the breakdown voltage during the gate-off time, thereby make the release of the trapped charge carriers faster and then reduces the after-pulse noise. As a result, it permits to increase the repetition rate of the SPD.
Abstract:
A photon detection system including a photon detector configured to detect single photons, a signal divider to divide the output signal of the photon detector into a first part and a second part, wherein the first part is substantially identical to the second part, a delay mechanism to delay the second part with respect to the first part, and a combiner to combine the first and delayed second parts of the signal such that the delayed second part is used to cancel periodic variations in the first part of the output signal.
Abstract:
An optical power monitoring device is provided with: an APD as a photodiode that converts the power of light to a current (Iapd); a resistor that is connected in parallel to the APD; a current mirror circuit that detects, as a first current value (I1), the value corresponding to the sum of the current (Irb) flowing through the resistor and the current (Iapd) flowing through the APD; and a control unit. The control unit stores in advance a value corresponding to the current flowing through the resistor as a second current value (I2), and determines the current (Iapd) flowing through the APD on the basis of the second current value (I2) and the first current value (I1) detected by the current mirror circuit.