Abstract:
A detection device having: a terahertz wave generation element; a terahertz wave detection element; a first transmission path arranged upon the terahertz wave generation element; a second transmission path arranged upon the terahertz wave detection element; and a sealed section arranged between the terahertz wave generation element and the terahertz wave detection element and separated from the first transmission path and the second transmission path, so as to surround the first transmission path and the second transmission path. A space between an emission surface in the first transmission path and an incident surface in the second transmission path is connected to a space between the first transmission path and the sealed section and to a space between the second transmission path and the sealed section.
Abstract:
The invention provides a high resolution, wide dynamic range, multi-color detection platform for microfluidic analyzers/instruments and methods. The detection platform uses multiple high gain semiconductor optical sensors for the detection of luminescence from cellular or biological samples. The digitized outputs from these sensors are combined and weighted in a signal processing unit, using pre-determined algorithms for each color, which optimize the resolution in each of these high gain semiconductor optical sensors while extending the dynamic range of the detection platform.
Abstract:
An apparatus for examination of a sample includes at least one sample chamber in which the sample can be provided, where the sample chamber has a detection surface; at least one light source for emitting a first input light beam which is totally internally reflected at the detection surface of the sample chamber into a first output light beam, and for emitting a second input light beam which is at least partially transmitted through the sample chamber into a second output light beam. The apparatus further includes at least one light detector for detecting the first and the second output light beams. The sample chamber is elongated and traversed in longitudinal direction by light of the second input light beam.
Abstract:
An active heterodyne detection system comprises a continuously tuneable laser source (1) emitting infra-red radiation, means (8) to split the infra-red radiation into a first part and a second part, means (4) to provide a frequency shift between the first part and the second part, means (8, 9) to direct the first part of the infra-red radiation to a target (2), means (4) to provide the second part of the infra-red radiation as a local oscillator, means (8, 9) to collect a scattered component of the first part of the infra-red light from the target (2), and means (5) to mix the scattered component and the local oscillator and route them to a detector (3) for heterodyne detection over a continuous spectral range. A method of active heterodyne detection over a continuous spectral range is also disclosed.
Abstract:
A method for detecting clots in a liquid is presented. The liquid is in a sample container. Light is irradiated having a first wavelength to the sample container by a first light source at a changeable vertical irradiating position (P—0 to P_n) such that the light irradiated by the first light source passes through the sample container along a first measurement path. An intensity of light having the first wavelength passing along the first measurement path and exiting the sample container is measured. Clots are detected in response to the measured intensity.
Abstract:
The invention relates to means for the examination of a sample, wherein a first input light beam (L1) is totally internally reflected at a detection surface of a sample chamber (111), while a second input light beam (L1′) is transmitted through the sample chamber (111). The resulting first and second output light beams (L2, L2′) are detected and can be evaluated with respect to frustrated total internal reflection and optical absorbance, respectively. Preferably, both output light beams (L2, L2′) are detected by a single image sensor (155).
Abstract:
An opto-mechanical switch produces different optical paths from two optical path sections out of a plurality of optical path sections that are oriented in different spatial directions. The switch has an optical component on which one end of each optical path section impinges, and which is adapted to be moved linearly in a direction of movement at right angles to the optical path sections between different switching positions, in which it selectively couples different optical path sections optically with each other. Further provided is a measuring system for the analysis of fluids, having such an opto-mechanical switch.
Abstract:
Fluid processing tube for use in optical analysis comprising at least one first portion being made from a first material suitable for optical analysis and being configured to include two optical paths of different lengths, and at least one second portion connected to said first portion and being made from a second material different from said first material.
Abstract:
A spectrophotometer (2) comprising a source of radiation (6), preferably optical radiation, disposed to emit radiation at a plurality of wavelengths towards a sample in a sample holder (4) and a detection arrangement 8 for detecting the radiation after its interaction with the sample. The sample holder (4) is adapted to present a plurality of different path lengths for the emitted radiation through the sample. An arithmetic unit (10;10b) is operably connected to receive an intensity dependent output from the detection arrangement (8) and is adapted to store an intensity value of the detected emitted radiation indexed to its wavelength at two or more path lengths of the plurality of different path lengths and to calculate a value dependent on the ratio of the indexed intensity values at each of two path lengths by which an indication of the presence of a substance of interest withiA spectrophotometer (2) comprise a source of radiation (6), preferably optical radiation, disposed to emit radiation at a plurality of wavelengths towards a sample in a sample holder (4) and a detection arrangement 8 for detecting the radiation after its interaction with the sample. The sample holder (4) is adapted to present a plurality of different path lengths for the emitted radiation through the sample. An arithmetic unit (10;10b) is operably connected to receive an intensity dependent output from the detection arrangement (8) and is adapted to store an intensity value of the detected emitted radiation indexed to its wavelength at two or more path lengths of the plurality of different path lengths and to calculate a value dependent on the ratio of the indexed intensity values at each of two path lengths by which an indication of the presence of a substance of interest within the retained sample can be obtained.
Abstract:
A gas sample chamber for use in a gas analyzer consists of an elongated hollow tube having an inwardly-facing specularly-reflective surface that permits the tube to function also as a light pipe for conducting radiation from a source to a detector through the sample gas. A number of apertures in the wall of the elongated hollow tube permit the sample gas to enter and exit. Particles of smoke and dust of a size greater than 0.1 micron are kept out of the chamber by use of a semi-permeable membrane that spans the apertures in the hollow tube. Condensation of the sample gas components is prevented by heating the sample chamber electrically to a temperature above the dew point of the component of concern. In one embodiment, at least one detector are spaced around the periphery of the elongated hollow tube adjacent one end of it. In another embodiment, at least one detector are spaced along the length of the elongated hollow tube.