Abstract:
A method and device for automatically identifying a point of interest (e.g., the deepest or highest point) on a viewed object using a video inspection device. The method involves placing a first cursor on an image of the object to establish a first slice plane and first surface contour line, as well as placing another cursor, offset from the first cursor, used to establish an offset (second) slice plane and an offset (second) surface contour line. Profile slice planes and profile surface contour lines are then determined between corresponding points on the first surface contour line and the offset (second) surface contour line to automatically identify the point of interest.
Abstract:
A high-speed, 3-D method and system for optically inspecting parts are provided. The system includes a part transfer subsystem including a transfer mechanism adapted to support a part at a loading station and transfer the supported part from the loading station to an inspection station at which the part has a predetermined position and orientation for inspection. The system also includes an illumination assembly to simultaneously illuminate an end surface of the part and a peripheral surface of the part. The system further includes a lens and detector assembly to form an optical image of the illuminated end surface and an optical image of the illuminated peripheral surface of the part and to detect the optical images. The system still further includes a processor to process the detected optical images to obtain an end view of the part and a 3-D panoramic view of the peripheral surface of the part.
Abstract:
An image acquisition device based on photo-thermal imaging, including a support beam, a translational electric motor, an imaging probe, and a light emitter. The translational electric motor is fixed to the lower side of the beam, and the imaging probe is perpendicularly fixed to a moving block in the translational electric motor. The light emitter is connected to the moving block via an adjustable connection piece, and by adjusting the adjustable connection piece, light emitted by the light emitter enters the imaging probe after being reflected by a sample. The moving block in the translational electric motor is configured to move the light emitter and the imaging probe in the radial direction right above the sample. The light emitter is configured to emit light on the upper surface of the sample. The imaging probe is configured to image reflected light from the upper surface of the sample.
Abstract:
A high-speed, 3-D method and system for optically inspecting parts are provided. The system includes a part transfer subsystem including a transfer mechanism adapted to support a part at a loading station and transfer the supported part from the loading station to an inspection station at which the part has a predetermined position and orientation for inspection. The system also includes an illumination assembly to simultaneously illuminate an end surface of the part and a peripheral surface of the part. The system further includes a lens and detector assembly to form an optical image of the illuminated end surface and an optical image of the illuminated peripheral surface of the part and to detect the optical images. The system still further includes a processor to process the detected optical images to obtain an end view of the part and a 3-D panoramic view of the peripheral surface of the part.
Abstract:
A method for detecting the structure of a textile multi-filament product and a method for processing a textile multi-filament product includes detecting the structure. In the method for detecting the structure of the textile multi-filament product, a fed multi-filament product is optically detected in a linear/sectioned manner in a detecting direction different than the feeding direction in order to obtain primary detection data. The detection data are evaluated and a parameter and/or a change thereto describing the structure of the multi-filament product is derived therefrom. The parameter or the change thereto is used in the processing method to control a pre-processing step or a processing step.
Abstract:
A system, suitable for high-speed operation, by which raw product (45), such as a slab of meat, can be accurately processed, such as by slicing into segments of desired weight, comprises a product profiling apparatus (15). The product profiling apparatus (15) measures the profile of the physical process. The product profiling apparatus (15) includes line lasers (75, 85) for directing a line of light across the upper and lower surfaces of the product (45) and visual image cameras (80, 90) directed toward the profile surface to capture, at fixed increments, the product profile. The product may also be weighed and the product density determined from the overall profile measurements. A controller (150) receives this data, and instructs the physical process accordingly.
Abstract:
A system, suitable for high-speed operation, by which raw product (45), such as a slab of meat, can be accurately processed, such as by slicing into segments of desired weight, comprises a product profiling apparatus (15). The product profiling apparatus (15) measures the profile of the physical process. The product profiling apparatus (15) includes line lasers (75, 85) for directing a line of light across the upper and lower surfaces of the product (45) and visual image cameras (80, 90) directed toward the profile surface to capture, at fixed increments, the product profile. The product may also be weighed and the product density determined from the overall profile measurements. A controller (150) receives this data, and instructs the physical process accordingly.
Abstract:
The apparatus is intended for performing quality checks on preforms (10) each having a body made of plastics material having an internal cavity (12) communicating with the exterior through an end opening (14) of the body. The apparatus comprises: a conveyor device (20) for transporting the preforms (10) along a predetermined path, an optical device (22) disposed along the path and suitable for forming an image of each of the preforms (10), a pneumatic device (24) disposed along the path and suitable for putting the internal cavity (12) of each of the preforms (10) under partial vacuum for a predetermined period of time, an electronic control unit (28) suitable for comparing the images of the preforms (10) with a standard reference image and/or for checking whether the value of the partial vacuum remains unchanged during the said period of time, and a selector device (26) disposed along the path and capable of separating the preforms (10) on the basis of the result of the comparison and/or checking operations performed by the control unit (28).
Abstract:
Substantially circular objects such as the ends of the filters of filter tipped cigarettes are inspected for acceptable appearance utilizing a blob analysis which includes imaging a peripheral region so as to provide resolution along the edge of the circular object.
Abstract:
The entire cylindrical surface of a cylindrical object such as a cigarette is optically inspected by first inspecting at least 180.degree. of the circumference of a first side of the surface, and then inspecting at least 180.degree. of the circumference of the other side. Each of the inspection stations illuminates more than 180.degree. of the circumference and images the surface from two angularly spaced directions to ensure that at least 180.degree. of the circumference is seen at each station. Any object having a defective image is automatically rejected from the apparatus, and the images and other statistical information regarding the performance of the system are displayed by the system. The images are formed in such a way as to greatly increase the speed at which the inspection system operates so that it can keep up with the very high rates at which objects such as cigarettes are made in modern machinery (e.g., approximately 10,000 cigarettes per minute). The images are analyzed using techniques which make possible the detection of very small defects and also compensate for possible nonuniform illumination of the objects in the circumferential direction.