Abstract:
Methods and systems are described for generating a data representation of a geographical region as an adjunct to conducting autonomous operations within the region. The method comprises receiving information specifying a plurality of localized caused zones having operation-defined geographical boundaries within the region; receiving heterogeneous data descriptive of the region; associating the received data with respective localized zones; fusing the received data associated with the localized zones into data representations of the localized zones; and integrating the data representations of the localized zones into a common data representation of the geographical region.
Abstract:
A system and method for navigating a vehicle through a mining environment to a target destination is presented. The system and method may be utilized to avoid contention in the mining environment. A route through the mining environment to the target destination for the vehicle is identified and a first speed profile for at least a portion of the route is determined. A potential contention condition associated with the route is identified and the potential contention condition along the route is used to determine a second speed profile for at least a portion of the route. An optimized speed profile is determined using the first speed profile and the second speed profile, and at least a portion of the optimized speed profile is communicated to the vehicle.
Abstract:
Method of manoeuvring a mobile mining machine including two or more self steered and optionally self propelled interconnected units being connected as train units over a respective articulating joint, said mobile mining machine having a forward and a backward direction, wherein in a tunnel following mode the method includes: —producing a set of first signals representative of sideward distances between at least one side of the mobile mining machine and a respective nearby wall of said tunnel, and—evaluating said set of first signals so as to determine a sideways position of the mobile mining machine in respect of the walls of said tunnel during driving, and—producing steering commands to be sent to a propulsion arrangement in order to maintain a position of the mobile mining machine to ensure clearance to tunnel walls during driving. The invention also relates to a system and a mobile mining machine.
Abstract:
The present invention relates to a method for positioning a mobile mining vehicle, which method determines scanning data by scanning the environment of the mining vehicle while being driven. Location information is determined for the mining vehicle on the basis of the scanning data and prestored environment model data. Level information is associated with the environment model data, the location level of the mining vehicle (1) is determined and the environment model data to be used are selected on the basis of the determined location level.
Abstract:
An operation control system for a mining machine includes, based on travel path information including at least information on moisture content of a travel path on which a mining machine operating at a mine runs, and position information being information on a position of a travel path corresponding to the travel path information, generating speed limit information for changing a speed limit for the mining machine to run on the travel path corresponding to the travel path information.
Abstract:
A system and method for navigating a vehicle through a mining environment to a target destination is presented. The system and method may be utilized to avoid contention in the mining environment. A route through the mining environment to the target destination for the vehicle is identified and a first speed profile for at least a portion of the route is determined. A potential contention condition associated with the route is identified and the potential contention condition along the route is used to determine a second speed profile for at least a portion of the route. An optimized speed profile is determined using the first speed profile and the second speed profile, and at least a portion of the optimized speed profile is communicated to the vehicle.
Abstract:
A system and method for guiding an off-highway truck along a roadway with respect to a trolley line determine a position of the off-highway truck on the roadway by sensing two or more roadside objects and uses the determined position of the off-highway truck and a known position of the trolley line relative to the two or more roadside objects to automatically determine a relative position of the off-highway truck under the trolley line. Based on the relative position of the off-highway truck under the trolley line, the off-highway truck is automatically steered to alter the position of the off-highway truck relative to the trolley line, e.g., to maintain an electrical power flow from the trolley line to the off-highway truck.
Abstract:
An autonomous machine control system includes a positioning unit measuring position and orientation, and a navigation unit storing a route plan including an intended travel path along a lane. The lane has a width defined by a left-hand boundary and a right-hand boundary. The navigation unit receives an uncertainty value associated with the position or orientation, and creates a virtual two-dimensional footprint based on an actual machine footprint and the uncertainty value. The navigation unit also simulates movement of the virtual footprint along the intended travel path, calculates a left-hand margin value defined by the virtual footprint and the left-hand boundary, and calculates a right-hand margin value defined by the virtual footprint and the right-hand boundary. The margin values are compared to a predetermined value, and speed or travel direction of the machine is controlled if either of the margin values is below the predetermined value.
Abstract:
A positioning system and method for determining a position of a machine are disclosed. The system may have an optical sensing device configured to generate determined shape data associated with a portion of the worksite at the position of the machine. The system may have a first signal device configured to transmit a radio frequency signal and receive a response signal. The system may have a second signal configured to receive the transmitted radio frequency signal and transmit the response signal. The system may have a controller in communication with the optical sensing device and at least one of the first and second signal devices. The controller may be configured to determine an approximate position based on the radio frequency signal and the response signal, identify a reference shape data corresponding to the determined shape data, and determine the position based on the approximate position and the reference shape data.
Abstract:
A control system is disclosed. The control system includes a first set of operator input devices and a laser target located on a first machine. The control system also includes a first laser measurement system located on a second machine and configured to measure a distance to the laser target. The control system further includes a communications system configured to selectively communicate a first mode of operation and a second mode of operation. In the first mode of operation, the second machine follows the first machine based on the measured distance. In the second mode of operation, the second machine moves based on a signal from the first set of operator input devices.