Abstract:
A method and apparatus for retransmission processing in a communication receiver includes improving the performance of Incremental Redundancy (IR) combining and retransmission processing at minimal increased complexity. One aspect of these improvements involves the use of prior decoding results, if the decoding block quality is above a threshold value, rather than or in addition to prior demodulation results, in retransmission processing. That is, the teachings herein propose selectively using the hard bit decisions obtained from decoding previously transmitted data blocks, to improve the decoding of retransmitted data blocks.
Abstract:
An apparatus and method are provided for operating Hybrid Automatic Repeat reQuest (HARQ) in a mobile communication system. The method includes receiving a number of HARQ processes of a persistent resource allocation and persistent resource allocation interval information; receiving data according to the persistent resource allocation interval information; calculating a HARQ process IDentifier (ID) using the number of HARQ processes of the persistent resource allocation, the persistent resource allocation interval information, and time information; and associating a HARQ process with the calculated HARQ process ID.
Abstract:
A wireless device for implementing Incremental Redundancy (IR) operations includes system processing circuitry operable to perform Physical (PHY) layer operations, Media Access Control (MAC) layer operations and Radio Link Control (RLC) operations of the wireless device. The system processing circuitry further includes an IR control module for processing IR transactions related to a received RLC data block and for tracking an Automatic Repeat Request (ARQ) receiving state and received block bit map and a Layer 1 (L1) module for intercepting and diverting the IR transactions to the IR control module and for passing a correctly decoded RLC data block to the RLC layer operations via the MAC layer operations thereby automatically synchronizing the RLC layer operations. An IR processing module is coupled to the system processing circuitry to perform IR operations on the received RLC data block based upon a direction from the IR control module.
Abstract:
Problem: A packet error rate in a receiver needs to be effectively reduced.Solution to Problem: A transmitter 11 inserts error detection codes into information packets on one-to-one basis, at a certain layer at which signal processing is performed earlier than at a physical layer, to obtain first information packets. The transmitter 11 codes the first information packets at the physical layer to obtain second information packets, and transmits the second information packets. At the certain layer, the transmitter 11 generates parity packets by coding the information packets and inserts the error detection codes into the parity packets on one-to-one basis to obtain first parity packets. The transmitter codes the first parity packets at the physical layer to obtain second parity packets. The transmitter 11 transmits the second parity packets in accordance with a transmission request from each of one or more receivers.
Abstract:
An apparatus and method for Transmission Time Interval (TTI) reconfiguration in a mobile communication system are provided. The apparatus includes an ACK/NACK determiner, an ACK/NACK controller, and a TTI controller. The ACK/NACK determiner determines if a response signal to be transmitted is ACKnowledgment (ACK) or Non ACKnowledgment (NACK) depending on an error or non-error of data received from a User Equipment (UE). The ACK/NACK controller counts the ACK and NACK determined in the ACK/NACK determiner. The TTI controller identifies if number of the latest ACKs counted in the ACK/NACK controller is continuously generated by preset number of times and, if it is continuously generated by the present number of times, reconfigures a new TTI.
Abstract:
A packet combining device for a communication system using hybrid automatic repeat request (HARQ) includes: a HARQ buffer; a combiner configured to combine data which is previously received and stored in the HARQ buffer with newly-received data; and a channel decoder configured to attempt channel decoding by using the combined received data provided from the combiner and provide one or more of log likelihood ratios (LLRs) computed for a systematic bit and a parity bit of the combined received data to the combiner such that the one or more LLRs are combined with the data used for channel decoding.
Abstract:
A method and a receiving device, the method receiving an indication of pending data from an access network, the pending data including a sequence number for every unit of the pending data; and sending transmission instructions to a first transmitter within the access network, the transmission instructions including a range of sequence numbers desired by the receiving device and an error correction and coding scheme to be used by the first transmitter. Further, a receiving device having a processor; and a communications subsystem, wherein the processor and communications subsystem cooperate to receive a first stream from a first transmitter; receive a second stream from a second transmitter; and soft combine the first stream and the second stream at the receiving device.
Abstract:
Different transmissions based on different content blocks which were segmented from the same digital content according to different segmentation schemes, where each of the content blocks has any substring in common with at least one of the other content blocks, are received by a receiving radio communication station, for example a mobile telephone or a mobile network base station. Certain encoded received bits derived from different ones of the transmissions are combined into combined bits. Other encoded received bits derived from one or more of the different transmissions are provided together with the combined bits to a decoder.
Abstract:
An embodiment of the present invention provides a method of efficiently storing metrics for Hybrid Automatic Retransmission Request (HARQ) combining and enabling saving of memory buffer in communication systems, comprising using non-linear quantization of the metrics and managing an aggregated buffer for all HARQ channels.
Abstract:
Hybrid Automatic Repeat Request (HARQ) is implemented using multi-bit feedback and variable retransmission energy. The multi-bit feedback provides information to the transmitter about the state of the decoder so that the transmitter can adapt retransmissions to the current state of the decoder. In some embodiments, the multi-bit feedback indicates a level of convergence reached by the decoder, and the transmitter varies an amount of energy used for the retransmission as a function of the multi-bit feedback. The transmitter can vary the amount of energy applied to the retransmission by varying the number of bits in the retransmission, or by varying a transmit power used for the retransmission.