Abstract:
An enclosure includes a first enclosure and a second enclosure. A deflector deflects a light emitted from a light source. A first optical system leads the light emitted from the light source to the deflector. A second optical system includes at least one optical element, and leads the light deflected by the deflector onto a surface to be scanned. The first enclosure holds the light source, the deflector, and the first optical system, and the second enclosure holds the at least one optical element included in the second optical system.
Abstract:
A scanning apparatus for preventing defocus aberration is provided. The scanning apparatus includes a flatbed scanning portion and a scanning module. The flatbed scanning portion includes a glass platform. The scanning module includes a scanning module case, a light source, multiple reflective mirrors, a lens, an optical sensing element, a printed circuit board and a metallic post. The metallic post is interconnected between the scanning module case and the printed circuit board. The printed circuit board is not in direct contact with the scanning module case so as to prevent defocus aberration resulting from thermal expansion.
Abstract:
A modularized light-guiding apparatus and manufacturing method, which may make the light of a light source proceed at least twice light reflections of predetermined directions. The light-guiding apparatus includes a plurality of modularized reflection elements, which may be differentiated to several different types of reflection element. Each type of each reflection element all has substantially same adjoining device and edge size for providing to be adjoined and piled-up with another reflection element. But, the reflection element of different type individually has different number of reflection plane for providing the light to proceed different times of light reflection. It may determined the light reflection times and light-path length for the light-guiding apparatus, by choosing several different types of reflection element among plural reflection elements to proceed the piling-up for the light-guiding apparatus.
Abstract:
An optical carriage of scanner has a mirror assembly and a device assembly, the mirror assembly has a mirror mount, some mirror holder, and some supporters, and the device assembly has a chassis. In this invention, the mirror assembly and the device assembly are mechanically connected after separately formation. Further, to ensure correct shape of these mirror holders and these supporters, they could be formed by metal punch, plastic ejection, or plastic process.
Abstract:
An optical reading device of a scanning apparatus includes a housing, two movable mirror clamps and two supporting plates. The housing contains therein a light source, a mirror set, a lens and an image sensor. These two movable mirror clamps are used for clamping both edges of a specific reflective mirror of said mirror set such that the position of said specific reflective mirror is adjustable by an assembler. These two supporting plates are protruded from opposite sides of said housing for supporting said movable mirror clamps.
Abstract:
An optical scanning module with linear CMOS image sensor (linear CMOSM) applied to scanners or multi-function printers is disclosed. The optical scanning module includes a light source for emitting light, a reflection mirror group, a focus lens group, and a linear CMOS image sensor having at least one linear CMOS image sensor unit and one A/D analog-digital converter. The light source can be a cold cathode fluorescent lamp (CCFL), a Xenon lamp or linear LED. Light emitted from the light source projects onto an object being scanned. Then the light reflected by the object being scanned becomes scanning light, passing through the reflection mirror group and the focus lens group and being focused on the linear CMOS image sensor for being converted into electrical signal. By A/D conversion of the linear CMOS image sensor unit in the linear CMOS image sensor, signal is sent out in USB or LVDS format so as to achieve high scanning speed, low distortion, large depth of focus and convenient transmission.
Abstract:
A multi-beam luminous source apparatus, an optical scanning apparatus, and an image formation apparatus are provided. The multi-beam luminous source includes a first member for supporting a coupling lens and a second member for supporting a control substrate that supports a Vertical Cavity Surface Emitting Laser (VCSEL). The first member and the second member are joined with a screw at a reference plane that perpendicularly intersects an optical axis of the coupling lens. The second member includes a base member that supports the control substrate and a base member that includes a branch mirror, a convergent lens, and an optical detection sensor.
Abstract:
The present invention relates to a scanning method, more particularly, to a two-directions scanning method by using a user interface (UI). At first, a scanning mode is chosen and the first dpi (dots per inch) of the preview procedure is set in the user interface. Then an instruction is keyed in the user interface to make a scan head move along the first scanning direction by using the first dpi and start the first scanning procedure. The first scanning procedure is a preview procedure. After finishing the first scanning procedure, a user can view the first image, which is got from the first scanning procedure, on a monitor and the scan head moves along the second scanning direction by using the second dpi to start the second scanning procedure. The second image data, which is got from the second scanning procedure, is saved in a memory. The second dpi is usually the highest dpi of the scan head. Following the needs of the user, the second dpi can be preset in the user interface to increase the scanning rate of the second scanning procedure. After the user selects a scope of the first image, which he or she wants to get, and the third dpi is set, the user interface will get the partial second image, which is corresponding to the scope of the first image that is selected by the user, by using a program to adjust a graph image coordinate and a dpi scale. At last, the third image, which is got according to the third dpi and the scope of the first image that he or she wants to get, is shown on the monitor.
Abstract:
The present invention has as its object to provide a light source unit in which the relative portion of a detecting device and a condensing device is accurately determined, whereby the detecting device can reliably detect a laser beam, and a scanning optical apparatus using the same, and for this purpose, the present invention provides a scanning optical apparatus having a light source, a holding member for holding the light source, a deflecting device for deflecting light emitted from the light source, a detecting device for detecting the light deflected by the deflecting device, and a condensing lens for condensing the light incident on the detecting device, wherein the holding member positions the detecting device, and holds the condensing lens.
Abstract:
A mirror holding apparatus, disposed in a chassis of a scanner, is disclosed. The mirror holding apparatus includes two opposite holding bases and more than one pair of holding plates, for holding the mirror and providing various angles or directions of inclination of the mirror. The pairs of holding plates are not parallel to any other. When the light reflected from the mirror on one pair of holding plates deviates from the original optical path. A substitute mirror hanging at the substitute pair of holding plate can be used to adjust the deviated optical path. Therefore, the wasting of material is avoided and the time and labor for producing a new holding base is saved.