Abstract:
A rotation of an original cover and a hinge member in a vertical setting state of an image reading apparatus is locked by a simple operation. A locking mechanism which fixes the hinge member to the image reading apparatus is provided. The locking mechanism is fixed in a state in which the image reading apparatus has vertically been set by using its side surface on the hinge side as a setting surface and its fixture is released in a state in which the other surface is used as a setting surface. The locking mechanism has a construction in which a movable lock member provided in the hinge engages with the lock receptacle of the image reading apparatus upon vertical setting.
Abstract:
An image reading apparatus comprises an original placement portion on which an original is to be placed, optical unit for optically scanning the original on the original placement portion while moving relative to the original placement portion and a guide member that guides movement of the optical unit. The optical unit includes a sliding member having a screw portion that slides in contact with the guide member and a screw hole portion to which the sliding member is mounted. The screw portion of the sliding member is plastically deformable and screwed into the screw hole portion while being plastically deformed.
Abstract:
An image forming apparatus including an image forming unit to form an image on a print medium, the image forming apparatus including a guide shaft, first and second shaft insertion members into which the guide shaft is inserted, a unit main body including first and second insertion holes provided along the guide shaft and whose diameters larger than external diameters of the first and second shaft insertion members, respectively, and an adhesive to adhere the first and second shaft insertion members inserted into the first and second insertion holes, to the unit main body.
Abstract:
The present invention provides an image system comprising providing magnetic transport rails, spacing magnetic flux rails from the magnetic transport rails, positioning a position gradient strip adjacent to the magnetic transport rails and securing a magnetically levitated carriage assembly to the magnetic transport rails, wherein securing the magnetically levitated carriage comprises securing a linear scanning array and light source to scan images during movement of the magnetically levitated carriage, positioning a position detection tab over the position gradient strip to detect and provide position information and controlling the movement of the magnetically levitated carriage using a motivator tab.
Abstract:
The document reading device includes a document table having a contact glass on which a document is placed, and a reading unit having a contact type image sensor which is contained in a case body and adapted to read the document which is positioned on the contact glass. The reading unit is positioned apart from the contact glass, and so designed as to conduct reading by scanning from a home position to a final reading position in a non-contact manner, and as to reciprocally move from the final reading position to the home position.
Abstract:
A scan guide upon image reading by an image reading apparatus having a driving mechanism constructed by a rack and a pinion gear is stably performed. The pinion gear is provided on a downstream side of two contact portions which are in contact with a guide rail of the reading scan. A straight line drawn in a pressure angle direction from a contact point of the rack and the pinion gear upon reading and scanning passes between the two contact portions with the guide rail, so that a stable positional relation between a driving force of the gear and the contact portions is obtained. The stable guiding can be performed.
Abstract:
A connecting mechanism for a scan carriage and an axial rod has a scan carriage, an axial rod, and a connecting device for connecting the scan carriage to the axial rod. The scan carriage has a flange protruding horizontally from a side thereof. The axial rod is disposed under the flange of the scan carriage. The connecting device includes an elastic hooking plate fixed vertically on a bottom surface of the flange, and a pair of lining pads. The hooking plate has a free end bent downwardly and inwardly therefrom against the axial rod. The pair of pads is fixed on two sides of the bottom surface of the flange and lean against the axial rod mating with the hooking plate.
Abstract:
A carriage moving device includes a main guide member configured to guide movement of a carriage, a sub-guide member configured to guide the movement of the carriage and to regulate rotation of the carriage, and an engaging portion provided in the carriage and configured to slide relative to the main guide member. The main guide member includes a first flat face extending vertically, and a second flat face extending in a direction such that a vertical upper portion is farther from the first flat face than a vertical lower portion. The engaging portion is in contact with the first and second flat faces.
Abstract:
A scanning apparatus comprises a light-pervious plate, an optical device, and a guiding mechanism. The light-pervious plate provides a plane for placing an object to be scanned. The optical device is disposed under the light-pervious plate for capturing the image of the object and transforms the image into the corresponding signal. The guiding mechanism further comprises a guide bar, a loading frame, and an elastic element. The guide bar is disposed in the scanning apparatus and provides a scanning path. The loading frame, including a guide slot, is assembled with the optical device. Since the guide slot coordinates the guide bar, the optical device is mounted to move along the scanning path. The elastic element, disposed within the guide slot, exerts an elastic force toward the guide bar to reduce the gap between the guide slot and the guide bar so that the optical device can get better image of the document.
Abstract:
A scanning unit is configured to slide along a guide shaft that extends in a predetermined direction. The scanning unit includes a carriage configured to slide along the guide shaft, a bearing which is disposed on a carriage and through which the guide shaft passes, and an elastic deformation allowance mechanism which permits elastic deformation of the external shape of the bearing in the predetermined direction at a predetermined time. For example, a contact image sensor unit includes a box equipped with a contact image sensor. The box has a bearing through which a guide shaft is inserted. The bearing has a pair of bosses, bushings that fit therein, and a coil spring that is disposed between the bushings. The bushings are urged by the coil spring, so that the bushings continually protrude outwards. As the contact image sensor unit slides along the guide shaft, the bushings insert in between the bosses when the bushings abut the wall surface of the frame, so that the bearing is deformed elastically. An image reading device may include a scanning unit.