Abstract:
The present invention concerns a textile motherboard (TMB) employable in garments, tablecloths, gowns, etc. that incorporates at least a central processing unit (CPU) or a peripheral or a combination thereof, with the intention of monitoring, informing, or controlling parameters of interest. The garments may be utilized or worn by users (human or not). The textile of the garment is utilized as substrate to conform the TMB. The TMB may exhibit multiple-layer structures and VIAs (Vertical Interconnect Accesses). The routings of the TMB are conformed of textile material capable of transmitting signals between CPU and a means to register information or between the CPU and the combination of peripherals. Layers, routings, and VIAs may be incorporated into the TMB by using known textile manipulation techniques such as: knitting, weaving, stamping, perforating, or they may also be printed on the textiles. Every component is modular and interchangeable and connects to the TMB utilizing textile connectors such as snaps, hooks, or similar elements. TMB, CPU, and peripherals are washable. CPU and peripherals may be mounted on textile boards, as well as on rigid or flexible PCBs (printed circuit boards), utilizing discrete electronic and photonic elements. The CPU includes a microcontroller, a microprocessor, or a comparable element. The peripherals include photonic transducers or electronic transducers or combinations thereof such as: capacitive, pulse, humidity, temperature, accelerometers, and gyroscopes sensors. The peripherals also include screens, modules for serial communications, radiofrequency (including Zigbee technology, Bluetooth, etc.) and Wi-Fi, as well as similar elements.
Abstract:
Conductor wires 2a and 2b are sandwiched between two elastomer sheets 1a and 1b whose adhesive layers face each other, and both adhere. When the elastomer sheets 1a and 1b are their natural lengths without being subjected to any tension, the conducting wires 2a and 2b are wound around into spiral shapes and contract. When tension is applied to the elastomer sheets 1a and 1b, the number of spiral turns of the conductor wires 2a and 2b decreases according to its extension and the conductor wires 2a and 2b extend. The conductor wires 2a and 2b are electrically connected to and fixed to a circuit element at both ends of the elastomer sheets 1a and 1b. As a result, it is possible to mass-produce, at low costs, highly stretchable wirings in which a change in resistance values due to extension thereof is small.
Abstract:
Disclosed herein are a printed circuit board and a method of manufacturing the same. The printed circuit board includes: a core layer having a first circuit wiring layer formed on one surface or both surfaces thereof; an insulating layer laminated, as at least one layer, on one surface or both surfaces of the core layer; and a second circuit wiring layer formed on one surface of the insulating layer, wherein a conductive core is included in upper and lower insulating layers contacting the second circuit wiring layer requiring an electromagnetic wave shielding, or the conductive core is included in the insulating layer or the core layer contacting the first circuit wiring layer requiring the electromagnetic wave shielding.
Abstract:
Electronic devices may be provided with electronic components and electrical connectors coupled between the electronic components. A connector may be formed in a small gap between the electronic components. The connector may be a thin sheet of flexible conductive material with a conductive adhesive on one surface. The connector may be installed between the components using an applicator that is attached to the connector. The applicator may be a pull-tab liner having a first surface that is tacky and a second opposing surface that is non-stick. The applicator may have an extended portion that can be held by a technician while installing the connector. The connector may be installed by inserting the connector and applicator between the components, pinching the components against the connector and applicator, and removing the applicator by pulling the extended portion to peel the applicator from the connector.
Abstract:
The invention relates to a method for determining a functional area of an electronic textile (100;200). The electronic textile comprises a textile substrate having a first plurality of conductors (108a-b;202a-d), a second plurality of conductors (104a-c;204a-d), and a plurality of capacitors (112;212a-p), each capacitor comprising a conductor from the first plurality of conductors (108a-b;202a-d) and a conductor from the second plurality of conductors (104a-c;204a-d), separated by a dielectric (103a), the capacitors (112;212a-p) being distributed across substantially an entire surface of the electronic textile, wherein each capacitor (112;212a-p) has a capacitance of at least 10 pF.The method comprises, for each of the capacitors, the steps of (a) applying (301) a voltage between the conductor from the first plurality of conductors associated with the capacitor and the conductor from the second plurality of conductors associated with the capacitor, (b) detecting (302) an electrical characteristic indicative of a capacitance of the capacitor, (c) evaluating (303) the detected electrical characteristic, and (d) determining (304) whether the capacitor is included in the functional area of the electronic textile based on the evaluation.As the method takes advantages of physical characteristics inherent in the electronic textile, such as the capacitors formed between conductors in the electronic textile, no electronic devices need to be arranged on the electronic textile to determine the functional area.
Abstract:
Provided are conducting polymer nanofibers, methods of making conducting polymer nanofibers, and uses thereof. The conducting polymer nanofibers can be formed by, for example, electrospinning, force spinning, and centrifugal spinning using a spinning dope. The conducting polymer nanofibers can be used in devices, such as a radiation detecting device.
Abstract:
The present invention relates to a textile digital band which is capable of providing a high-speed communication path with surrounding computing devices, through easy and convenient attachment thereof to a conventional garment, and a fabrication method thereof. For this purpose, disclosed herein is a textile digital band comprising a plurality of warps formed parallel to each other in the first direction, and a plurality of wefts formed parallel to each other in the second direction perpendicular to the first direction, wherein the warp includes at least one digital yarn through which electrical currents can flow.
Abstract:
Disclosed herein are a printed circuit board and a method of manufacturing the same. The printed circuit board includes: a core layer having a first circuit wiring layer formed on one surface or both surfaces thereof; an insulating layer laminated, as at least one layer, on one surface or both surfaces of the core layer; and a second circuit wiring layer formed on one surface of the insulating layer, wherein a conductive core is included in upper and lower insulating layers contacting the second circuit wiring layer requiring an electromagnetic wave shielding, or the conductive core is included in the insulating layer or the core layer contacting the first circuit wiring layer requiring the electromagnetic wave shielding.
Abstract:
A method for manufacturing a conductive fiber and/or fabric, a conductive fiber and/or fabric, and a method for manufacturing a circuit board are provided, the method for manufacturing a conductive fiber and/or fabric including: preparing a composition including a solvent and a metal precursor; impregnating a fiber and/or fabric with the composition; and reducing the metal precursor in the fiber and/or fabric impregnated with the composition into a metal to obtain a conductive fiber and/or fabric, wherein the composition includes 50 to 99 wt % of the solvent and 1 to 50 wt % of the metal precursor.
Abstract:
The present invention provides a wiring board giving good heat dissipation over a long period of use. The present invention also provides a method for producing a wiring board, including coating a surface of a metal substrate, which is made of an aluminum plate, with a composition containing a substance having a polysiloxane structure and inorganic particles having insulating and heat-dissipating properties, curing the composition, then bonding a copper foil to the cured composition, and partially removing the copper foil, thereby forming a wiring layer.