Abstract:
Disclosed herein are a printed circuit board and a method for manufacturing the same. According to a preferred embodiment of the present invention, the printed circuit board includes: an insulating layer having a connection pad; and a resist layer formed on the insulating layer and provided with an opening so that the connection pad is exposed, wherein a wall surface of an opening of the resist layer may have at least one protrusion.
Abstract:
An assembly includes a circuit board and a flexible flat cable. The circuit board includes a board body having top, bottom and side faces, and a connection module. The board body is formed with a positioning slot that is formed through the top and bottom faces and that has a first length, and an opening that extends from the side face and that is in spatial communication with the positioning slot. The opening is formed through the top and bottom faces and has a second length shorter than the first length. The flexible flat cable includes a connection unit and a cable main body that has a width greater than the second length. The cable main body is able to pass through the opening, and extends through and is positioned in the positioning slot.
Abstract:
A wiring board includes a first insulating layer containing a thermosetting resin, a first wiring layer stacked on an upper surface of the first insulating layer, a second insulating layer stacked on the upper surface of the first insulating layer, a second wiring layer stacked on an upper surface of the second insulating layer, and a third insulating layer stacked on the upper surface of the second insulating layer. The second and third insulating layers contain a first photosensitive resin. An outer side surface of the second insulating layer is flush with an outer side surface of the first insulating layer. An outer side surface of the third insulating layer is located inside the outer side surface of the second insulating layer in a plan view. The upper surface of the second insulating layer connecting to the outer side surface thereof is exposed from the third insulating layer.
Abstract:
Provided is a circuit device in which encapsulating resin to encapsulate a circuit board is optimized in shape, and a method of manufacturing the circuit device. A hybrid integrated circuit device, which is a circuit device according to the present invention includes a circuit board, a circuit element mounted on a top surface of the circuit board, and encapsulating resin encapsulating the circuit element, and coating the top surface, side surfaces, and a bottom surface of the circuit board. In addition, the encapsulating resin is partly recessed and thereby provided with recessed areas at two sides of the circuit board. The providing of the recessed areas reduces the amount of resin to be used, and prevents the hybrid integrated circuit device from being deformed by the cure shrinkage of the encapsulating resin.
Abstract:
A flex-rigid wiring board includes an insulative substrate, a flexible wiring board positioned beside the insulative substrate, and an insulation layer positioned over the insulative substrate and the flexible wiring board and exposing at least a portion of the flexible wiring board. The flexible wiring board has a tapered portion which is made thinner toward the insulative substrate at an end portion of the flexible wiring board positioned beside the insulative substrate.
Abstract:
A wiring board for a built-in electronic component includes a substrate having a cavity portion, an electronic component accommodated in the cavity portion of the substrate, a filling resin material filling a space formed between the electronic component and an inner wall of the substrate forming the cavity portion, an insulation layer formed on the substrate and the electronic component accommodated in the cavity portion of the substrate, and a via conductor formed in the insulation layer such that the via conductor is connected to a connection terminal of the electronic component. The substrate has projection portions formed on the inner wall of the substrate such that the projection portions project toward the electronic component accommodated in the cavity portion of the substrate.
Abstract:
A lighting apparatus including a base with a coupling rim and a supporting plate and a housing coupled to the coupling rim such that the supporting plate is covered. The housing includes a channel part to guide air in and an air introduction hole to introduce the guided air into an inner space of the housing. A cooling fan is included and is disposed on an upper surface of the supporting plate covered by the housing, wherein the cooling fan draws air introduced through the air introduction hole into the inner space of the housing, and discharges the in-drawn air outside through an air discharging hole in the base. A light source module is included and mounted on a lower surface of the supporting plate, wherein the channel part provides a region depressed in a stepped manner along an outer surface of the housing.
Abstract:
An electrical connector comprises a metallic housing; and a printed circuit board receiving in the metallic housing and defining a mating portion formed on a front end thereof. The mating portion defines a plurality of conductive pads formed on a top surface thereof, the plurality of conductive pads comprises a plurality of first grounding contacts, a plurality of pairs of differential signal contacts and a plurality of second grounding contacts, each of pair of differential signal contacts are intervened between two adjacent grounding contacts, each of second grounding contact is located in front of the pair of differential signal contacts and electrically and mechanically connected with two front ends of two first grounding contacts.
Abstract:
A printed circuit board having a connection terminal which includes: an insulating substrate including first and second surfaces, and an end surface along an outline normal to an insertion direction of the connection terminal; at least one lead wiring layer formed on the first surface of the insulating substrate; an insulating protection film covering the lead wiring layer; at least one lead terminal layer constituting an end portion of the lead wiring layer, the lead terminal layer being formed into a strip, and having an end surface along the outline; a reinforcement body adhered on the second surface of the insulating substrate at a backside position of the lead terminal layer; wherein a distance between an outer surface of the lead terminal layer and an outer surface of the reinforcement body on the outline side is smaller than a distance therebetween on the lead wiring layer side.
Abstract:
There is provided an interconnection structure. An interconnection structure according to an aspect of the invention may include: a plurality of side portions provided on one surface of a substrate part and a plurality of cavities located between the side portions and located further inward than the side portions; and electrode pattern portions provided on surfaces of the side portions and the cavities.