Abstract:
In this invention, it provides a method for forming a pattern, which is capable of improving position control after a drop, which was discharged from a drop discharge apparatus, was landed on a substrate. In addition, it provides a drop discharge apparatus which is capable of improving drop position accuracy after it was landed. Further, it provides a method for manufacturing a semiconductor device which uses the drop discharge apparatus of this invention.This invention is characterized in that a drop which was discharged from a discharge part, or a substrate on which a drop is landed, is irradiated with a laser beam, and a landing position of a drop is controlled. By this invention, it is possible to form a pattern, without using a photolithography process.
Abstract:
A high voltage is applied between an emitter electrode in an atomizing barrel and an opposed electrode supported to the atomizing barrel to electrostatically atomize a liquid supplied to the emitter electrode into a mist of charged minute particles. A silencer duct is attached to the front end of the atomizing barrel for reducing noises developed when generating the mist of the charged minute particles. Accordingly, the silencer duct can absorb the noises developed around the emitter electrode and the opposed electrode at immediately downstream thereof for effectively reducing the noises.
Abstract:
A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
Abstract:
A liquid-metering device comprising a droplet generator including a reservoir and, connected to the latter, a displacement space which is modifiable by an electromechanical transducer and which has an outlet opening and, upon excitation of the transducer, shoots a liquid droplet from a cold area into a heatable area through or counter to a gas stream generated by a gas source. To make the device suitable for automatic and quasi-continuous liquid metering in process analysis, a heatable evaporation chamber is provided through which the liquid to be metered flows via valves, and, between the evaporation chamber and the reservoir, a condensate chamber is connected via further valves. The condensate chamber and the reservoir are connected via additional valves and a pressure regulator to the gas source.
Abstract:
The electrostatic atomizing device includes a discharge electrode and an opposed electrode provided with an aperture. The opposed electrode has its inner surface opposed to the discharge electrode. The inner surface is a recessed surface which surrounds a tip of the discharge electrode. The inner surface has at least one part shaped into a spherical surface which is centered on the tip of the discharge electrode and has a constant radius. The opposed electrode is provided with a cylindrical electrode extending from a periphery of the aperture away from the discharge electrode.
Abstract:
A compressed air throttle apparatus has at least one throttle valve adjusted by an electric motor, and an electric circuit fitted with contacting elements to alternatively interrupt and close the electric circuit in relation to the throttle valve settings. This throttle apparatus preferably is applicable to a compressed air path of powder spraycoating equipment.
Abstract:
Provided is an electrostatic coating apparatus capable of insulating an electric motor electrically from a member, to which an electrostatic high voltage is applied, and reducing the size and weight of the electrostatic coating apparatus. This electrostatic coating apparatus comprises a rotary atomizing head, to which high voltage is electrostatically applied, an electrostatically grounded AC servomotor, and a spindle and a fixed insulating member for insulating the AC servomotor electrically from the rotary atomizing head and a speed-increasing device to be set at the same potential as that of the former. The spindle and the fixed insulating member have insulation distance enlarging portions and of the mode, in which the creepage insulation distances from the speed-increasing device to the AC servomotor are enlarged.
Abstract:
An oxidation and reduction fine particles generator includes an atomization electrode, a water feeder for supplying water to the atomization electrode and a high voltage generator, and also includes a switch device and a controller. The switch device changes an operation mode to an oxidation mode or a reduction mode. The controller generates negatively charged fine water particles including radicals through electrostatic atomization by applying a high voltage to water supplied to the atomization electrode in the oxidation mode. The controller also inactivates and activates the water feeder and the high voltage generator, respectively to generate reduction fine particles from the atomization electrode by dry discharge in the reduction mode.
Abstract:
A frame for a microfluidic chip may be used together with a laboratory apparatus. The frame is adapted at least for one of the following features: receiving the microfluidic chip; protecting the microfluidic chip; and, positioning the microfluidic chip relative to the frame. The microfluidic chip is movable relative to the frame.
Abstract:
An ionic liquid ion source can include a microfabricated body including a base and a tip. The microfabricated body can be formed of a porous metal compatible (e.g., does not react or result in electrochemical decaying or corrosion) with an ionic liquid or a room-temperature molten salt. The microfabricated body can have a pore size gradient that decreases from the base of the body to the tip of the body, so that the ionic liquid can be transported through capillarity from the base to the tip.