Abstract:
An electric vehicle running control system is provided. The electric vehicle running control system comprises a heating circuit coupled with an in-vehicle battery and configured to heat the in-vehicle battery. The vehicle running control system further comprises a load capacitor and a first current storage element. The first current storage element may be coupled with the load capacitor and the heating circuit respectively configured to reduce interference between the heating circuit and the load capacitor.
Abstract:
An integrated hybrid power assembly and a vehicle including the same are provided. The integrated hybrid power assembly includes a transmission comprising a front housing and a rear housing, a drive motor comprising a motor housing integrated with the rear housing of the transmission and a motor cover mounted to the motor housing, a speed reducer comprising a reducer housing, which is fixedly connected to the rear housing of the transmission and integrated with the motor cover of the drive motor, and a speed reducer cover mounted to the reducer housing; and a starting motor mounted to the transmission.
Abstract:
A driving circuit for an IGBT module is provided. The driving circuit includes: a gate driving resistor connected with the IGBT module; a driving module connected with the gate driving resistor; an integrating circuit connected with the driving module, in which the integrating circuit comprises an equivalent resistor and a first capacitor connected in series with the equivalent resistor, and a time constant of the integrating circuit is adjusted by changing a resistance of the equivalent resistor; a first optical coupler connected with the integrating circuit; and a micro control unit, connected with the first optical coupler.
Abstract:
A film and a method for preparing the film are provided. A substrate is provided, and a film is formed on at least a part of a surface of the substrate by magnetron sputtering a target under a protective gas and a reactive gas. The target includes polytetrafluoroethylene and magnesium fluoride, and the reactive gas includes at least one selected from a group consisting of CF4 and SiF4.
Abstract:
A transmitting device, a wireless charging system comprising the transmitting device and a method for controlling a charging process of the wireless charging system are provided. The transmitting device comprises: a transmitting coil configured to transmit an electric energy of the transmitting device; an oscillation and FM module configured to generate an LC resonance between the transmitting coil and the oscillation and FM module and to adjust a capacitance of the LC resonance so as to change a resonant frequency of the LC resonance; a first detecting module configured to detect a voltage and a current of the transmitting device; a control module configured to output a control signal to control the resonant frequency of the LC resonance according to a predetermined FM mode; a first communicating module configured to communicate with the receiving device wirelessly; and a power module configured to supply a drive power to the transmitting device.
Abstract:
A method for controlling a rotation rate of an electric motor includes the s following steps: determining if an absolute value of a difference between an objective rotation rate of the electric motor and an actual rotation rate of the electric motor is greater than or equal to a predetermined value, and if yes, compensating a q axis current of the electric motor to adjust the rotation rate.
Abstract:
A power battery pack and a power battery system are provided. The power battery pack comprises: a plurality of single batteries, each single battery comprising a plurality of battery units, in which an nth battery unit in the plurality of battery units in each single battery is connected with an nth battery unit in the plurality of battery units in an adjacent single battery in series to form an nth loop, where n≧1.
Abstract:
A discharging apparatus for an electric vehicle and an electric vehicle are provided. The discharging apparatus comprises: an AC charging interface; a charging connection device, having a first terminal connected with the AC charging interface and a second terminal connected with an exterior equipment, and configured to transmit an AC output from the AC charging interface to the exterior equipment; an instrument, configured to send a discharging preparation instruction; a controller, configured to detect whether the charging connection device is connected with the AC charging interface, and if yes, to switch to an external discharging mode; a battery manager, configured to control an external discharging circuit in a high-voltage distribution box of the electric vehicle to be connected after the controller switches to the external discharging mode; a power battery, connected with the high-voltage distribution box and configured to provide a DC via the external discharging circuit.
Abstract:
A sealing assembly for a battery, a method of preparing the sealing assembly and a lithium ion battery are provided. The sealing assembly for a battery comprises: a ceramic ring (3) having a receiving hole (31), a metal ring (4) fitted over the ceramic ring (3) for sealing an open end of the battery, and a column (2) formed in the receiving hole (31) which comprises a metal-metal composite (21), wherein the metal-metal composite (21) comprises: a metal porous body, and a metal material filled in pores of the metal porous body.
Abstract:
A driving system of an electric vehicle and an electric vehicle comprising the same are provided. The driving system comprises: a driving motor, a transmission and a hydraulic system. The transmission may include an input shaft, an output shaft, a first transmission unit, a first clutch, a second transmission unit and a second clutch.