Abstract:
Methods of selectively etching tungsten oxide relative to tungsten, silicon oxide, silicon nitride and/or titanium nitride are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor in combination with ammonia (NH3). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten oxide. The plasmas effluents react with exposed surfaces and selectively remove tungsten oxide while very slowly removing other exposed materials. Increasing a flow of ammonia during the process removes a typical skin of tungsten oxide having higher oxidation coordination number first and then selectively etching lower oxidation tungsten oxide. In some embodiments, the tungsten oxide etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.
Abstract:
A method of forming and controlling air gaps between adjacent raised features on a substrate includes forming a silicon-containing film in a bottom region between the adjacent raised features using a flowable deposition process. The method also includes forming carbon-containing material on top of the silicon-containing film and forming a second film over the carbon-containing material using a flowable deposition process. The second film fills an upper region between the adjacent raised features. The method also includes curing the materials at an elevated temperature for a period of time to form the air gaps between the adjacent raised features. The thickness and number layers of films can be used to control the thickness, vertical position and number of air gaps.
Abstract:
Methods of etching exposed titanium nitride with respect to other materials on patterned heterogeneous structures are described, and may include a remote plasma etch formed from a fluorine-containing precursor. Precursor combinations including plasma effluents from the remote plasma are flowed into a substrate processing region to etch the patterned structures with high titanium nitride selectivity under a variety of operating conditions. The methods may be used to remove titanium nitride at faster rates than a variety of metal, nitride, and oxide compounds.
Abstract:
Methods of depositing initially flowable dielectric films on substrates are described. The methods include introducing silicon-containing precursor to a deposition chamber that contains the substrate. The methods further include generating at least one excited precursor, such as radical nitrogen or oxygen precursor, with a remote plasma system located outside the deposition chamber. The excited precursor is also introduced to the deposition chamber, where it reacts with the silicon-containing precursor in a reaction zone deposits the initially flowable film on the substrate. The flowable film may be treated in, for example, a steam environment to form a silicon oxide film.
Abstract:
Methods forming a low-κ dielectric material on a substrate are described. The methods may include the steps of producing a radical precursor by flowing an unexcited precursor into a remote plasma region, and reacting the radical precursor with a gas-phase silicon precursor to deposit a flowable film on the substrate. The gas-phase silicon precursor may include at least one silicon-and-oxygen containing compound and at least one silicon-and-carbon linker. The flowable film may be cured to form the low-κ dielectric material.
Abstract:
A method for conformal dry etch of a liner material in a high aspect ratio trench is achieved by depositing or forming an inhomogeneous passivation layer which is thicker near the opening of a trench bat thinner deep within the trench. The methods described herein use a selective etch following formation of the inhomogeneous passivation layer. The selective etch etches liner material faster than the passivation material. The inhomogeneous passivation layer suppresses the etch rate of the selective etch near the top of the trench (where it would otherwise be fastest) and gives the etch a head start deeper in the trench (where it would otherwise be slowest). This method may also find utility in removing bulk material uniformly from within a trench.
Abstract:
Systems and methods are described relating to semiconductor processing chambers. An exemplary chamber may include a first remote plasma system fluidly coupled with a first access of the chamber, and a second remote plasma system fluidly coupled with a second access of the chamber. The system may also include a gas distribution assembly in the chamber that may be configured to deliver both the first and second precursors into a processing region of the chamber, while maintaining the first and second precursors fluidly isolated from one another until they are delivered into the processing region of the chamber.
Abstract:
A method of etching exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-nitrogen-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-nitrogen-containing material from the exposed silicon-and-nitrogen-containing material regions while very slowly removing other exposed materials. The silicon-and-nitrogen-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate. The methods may be used to selectively remove silicon-and-nitrogen-containing material at more than twenty times the rate of silicon oxide.
Abstract:
Exemplary methods and systems of semiconductor processing may include etching a portion of a silicon-containing material from a substrate disposed within a processing region of a semiconductor processing chamber. Methods may include forming a low quality oxide within one or more of the recesses, where the low quality oxide and a silicon-containing material each contain an exposed surface. Methods include contacting the low quality oxide and the high quality semiconductor material with a passivating agent selective to a surface defect of the low quality oxide. Methods include contacting the substrate with an etching agent and/or a cleaning agent, where the contacting with the cleaning agent removes the high quality semiconductor material at an equal or faster rate than the low quality oxide.
Abstract:
Semiconductor processing systems and methods for increased etch selectivity and rate are provided. Methods include etching a target material of a semiconductor substrate by flowing one or more plasma precursors through a microwave applicator into a remote plasma region of a semiconductor processing chamber. Generating a remote plasma within the remote plasma region at a microwave frequency, where the generated remote plasma comprises a density of greater than 1×1010 per cm3, an ion energy of less than or about 50 eV, or a combination thereof. Flowing the plasma effluents into a processing region of the semiconductor processing chamber. The microwave applicator includes a resonator body and a plate, where the resonator body is formed from or coated with a first dielectric material and the plate is formed from or coated with a second dielectric material.