Abstract:
A device for attaching a junction box to a photovoltaic. The photovoltaic panel has a photovoltaic side and a non-photovoltaic side. The device includes a bracket with a first side attachable to the junction box and a second side attachable to the non-photovoltaic surface of the photovoltaic panel. A central fastener is attachable at one end to the bracket and a plate is adapted for connecting to the other end of the central fastener and for mounting on the photovoltaic side of the photovoltaic panel. One or more rotatable spacers, connectible to the central fastener, may be located on the non-photovoltaic side of the photovoltaic panel. One or more fixed spacers may be located on the non-photovoltaic side connectible to the bracket.
Abstract:
An apparatus for a power system. The apparatus includes multiple electrical power sources and an enclosure operatively connected to the power sources at multiple input terminals. Multiple loads operatively connect to the enclosure at multiple output terminals by multiple cables. The enclosure includes the input terminals and the output terminals and a controller unit. Multiple selection units operatively connect to the controller unit, multiple power converters are connected to multiple connection paths. The selection units connect to at least one of multiple switches connected in the connection paths. Multiple sensor units are operatively attached to the controller unit which is configured to sense multiple parameters in the connection paths. Responsive to the parameters sensed by the sensor units, the selection units select the connection paths between the electrical power sources and the loads.
Abstract:
Methods for arc detection in a system including one or more photovoltaic generators, one or more photovoltaic power devices and a system power device and/or a load connectible to the photovoltaic generators and/or the photovoltaic power devices. The methods may measure voltage, current, and/or power delivered to the load or system power device, and the methods may measure voltage noise or current noise within the photovoltaic system. The methods may periodically, and/or in response to detecting noise, reduce an electrical parameter such as current or voltage in order to extinguish an arc. The methods may compare one or more measurements to one or more thresholds to detect arcing, and upon a comparison indicating that arcing is or was present, an alarm condition may be set.
Abstract:
A junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes to a different level of hermeticity. The first chamber may be adapted to receive a circuit board for electrical power conversion. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber.
Abstract:
A distributed power system including multiple (DC) batteries each DC battery with positive and negative poles. Multiple power converters are coupled respectively to the DC batteries. Each power converter includes a first terminal, a second terminal, a third terminal and a fourth terminal. The first terminal is adapted for coupling to the positive pole. The second terminal is adapted for coupling to the negative pole. The power converter includes: (i) a control loop adapted for setting the voltage between or current through the first and second terminals, and (ii) a power conversion portion adapted to selectively either: convert power from said first and second terminals to said third and fourth terminals to discharge the battery connected thereto, or to convert power from the third and fourth terminals to the first and second terminals to charge the battery connected thereto. Each of the power converters is adapted for serial connection to at least one other power converter by connecting respectively the third and fourth terminals, thereby forming a serial string. A power controller is adapted for coupling to the serial string. The power controller includes a control part adapted to maintain current through or voltage across the serial string at a predetermined value.
Abstract:
A junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes to a different level of hermeticity. The first chamber may be adapted to receive a circuit board for electrical power conversion. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber.
Abstract:
A method for testing a photovoltaic panel connected to an electronic module. The electronic module includes an input attached to the photovoltaic panel and a power output. The method activates a bypass to the electronic module. The bypass provides a low impedance path between the input and the output of the electronic module. A current is injected into the electronic module thereby compensating for the presence of the electronic module during the testing. The current may be previously determined by measuring a circuit parameter of the electronic module. The circuit parameter may be impedance, inductance, resistance or capacitance.
Abstract:
A method for arc detection in a system including a photovoltaic panel and a load connectible to the photovoltaic panel with a DC power line. The method measures power delivered to the load thereby producing a first measurement result of the power delivered to the load. Power produced by the photovoltaic panel is also measured, thereby producing a second measurement result of power produced by the photovoltaic panel. The first measurement result is compared with the second measurement result thereby producing a differential power measurement result. Upon the differential power measurement result being more than a threshold value, an alarm condition may also be set. The second measurement result may be modulated and transmitted over the DC power line.
Abstract:
A distributed power system wherein a plurality of power converters are connected in parallel and share the power conversion load according to a prescribed function, but each power converter autonomously determines its share of power conversion. Each power converter operates according to its own power conversion formula/function, such that overall the parallel-connected converters share the power conversion load in a predetermined manner.
Abstract:
A device for attaching a junction box to a photovoltaic. The photovoltaic panel has a photovoltaic side and a non-photovoltaic side. The device includes a bracket with a first side attachable to the junction box and a second side attachable to the non-photovoltaic surface of the photovoltaic panel. A central fastener is attachable at one end to the bracket and a plate is adapted for connecting to the other end of the central fastener and for mounting on the photovoltaic side of the photovoltaic panel. One or more rotatable spacers, connectible to the central fastener, may be located on the non-photovoltaic side of the photovoltaic panel. One or more fixed spacers may be located on the non-photovoltaic side connectible to the bracket.