Abstract:
Components with improved erosion resistance are disclosed. A surface of the component or a substrate of the component is modified by coating the substrate with an elastomer layer. The elastomer layer is then modified by embedding hard particles onto an outer side of the elastomer layer. The hard particles exhibit higher fractured toughness providing enhanced erosion protection. The elastic properties of the elastomer experience little reduction because the surface embedded particles are located only at the outer side or outer surface of the elastomer layer. Therefore, the bond between the inner side of the elastomer layer and the substrate or component surface is not interfered with and the potential for electro-chemical corrosion and poor adhesion are not increased by the presence of the hard particles as the hard particles are located away from the inner face between the elastomer layer and the substrate.
Abstract:
A method for manufacturing a component includes providing a metallic first powder having a plurality of first particles with a first mean particle diameter. A second powder added to the first powder has a plurality of second particles with a second mean particle diameter less than the first mean particle diameter. Energy is applied to at least the second powder so as to selectively heat the second particles. The first powder is combined with the heated second powder to form a modified powder including modified powder particles. Modified powder particles have an interior portion containing an interior composition, and an outer surface portion with an outer composition different from the interior composition.
Abstract:
A nozzle for additive manufacturing includes a plasma gas tube operable to provide plasma gas to a plasma flame, and a source material tube arranged concentrically inside the plasma gas tube such that the source material passes through the plasma flame. An apparatus and method for additive manufacturing are also disclosed.
Abstract:
An article includes a monolithic substrate and a coating on the monolithic substrate. The monolithic substrate is selected from graphite, silicon carbide, silicon carbide nitride, silicon nitride carbide, and silicon nitride. The coating has a free, exposed surface and includes a compound of aluminum (Al), boron (B) and nitrogen (N) in a continuous chemically bonded network having Al—N bonds and B—N bonds. The compound includes an atom of nitrogen covalently bonded to an atom of boron and an atom of aluminum, and the compound has a composition BxAl(1-x)N, where x is 0.001 to 0.999.
Abstract:
A method of creating a component comprises forming a substrate and depositing a template material within the substrate, such that there are a plurality of template member. The component is heated to a temperature above a melting point of the template material, such that the template material wicks into a porosity of the substrate and forms a component with voids. An average hydraulic diameter of the voids is less than 1 millimeter.
Abstract:
A method for fabricating a ceramic material includes impregnating a porous structure with a mixture that includes a preceramic polymer and a filler. The filler includes at least one free metal. The preceramic polymer material is then rigidized to form a green body. The green body is then thermally treated to convert the rigidized preceramic polymer material into a ceramic matrix located within pores of the porous structure. The same thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or pores of the porous structure.
Abstract:
A method for manufacturing a component includes providing a metallic first powder having a plurality of first particles with a first mean particle diameter. A second powder added to the first powder has a plurality of second particles with a second mean particle diameter less than the first mean particle diameter. Energy is applied to at least the second powder so as to selectively heat the second particles. The first powder is combined with the heated second powder to form a modified powder including modified powder particles. Modified powder particles have an interior portion containing an interior composition, and an outer surface portion with an outer composition different from the interior composition.
Abstract:
One exemplary embodiment of this disclosure relates to an article having a multi-layer wall structure having an embedded sensor. Further, the multi-layer wall structure and the sensor are bonded together.
Abstract:
A method for fabricating a metal-ceramic composite article includes a) depositing at least one layer of a powdered material onto a target surface, where the powdered material includes at least one metal and an energy-beam responsive ceramic precursor, and b) densifying the at least one metal and chemically converting at least a portion of the energy-beam responsive ceramic precursor to a ceramic material to form a densified layer by directing an energy-beam onto the at least one layer.
Abstract:
A component according to an example embodiment of the present disclosure includes first and second layers, the first and second layers each including ceramic-based fibers arranged in a ceramic-based matrix material, and nanofibers arranged between the first and second layers. An alternate component and a method of forming a component are also disclosed.