Abstract:
A dielectric barrier discharge plasma cell that generates a uniform, non-thermal plasma that is effective at neutralizing harmful agents. The cell is able to generate a uniform non-thermal plasma because it reduces arcing by controlling the distance between the conductor and dielectric, applying a low frequency alternating current voltage to the cell, and carefully applying the layers to the conductor and dielectric.
Abstract:
A natural gas reformer comprising a stack of thermally conducting plates interspersed with catalyst plates and provided with internal or external manifolds for reactants. The catalyst plate is in intimate thermal contact with the conducting plates so that its temperature closely tracks the temperature of the thermally conducting plate, which can be designed to attain a near isothermal state in-plane to the plate. One or more catalysts may be used, distributed along the flow direction, in-plane to the thermally conducting plate, in a variety of optional embodiments. The reformer may be operated as a steam reformer or as a partial oxidation reformer. When operated as a steam reformer, thermal energy for the (endothermic) steam reforming reaction is provided externally by radiation and/or conduction to the thermally conducting plates. This produces carbon monoxide, hydrogen, steam and carbon dioxide. When operated as a partial oxidation reformer, a fraction of the natural gas is oxidized assisted by the presence of a combustion catalyst and reforming catalyst. This produces carbon monoxide, hydrogen, steam and carbon dioxide. Because of the intimate thermal contact between the catalyst plate and the conducting plates, no excessive temperature can develop within the stack assembly. Details of the plate design may be varied to accommodate a variety of manifolding embodiments providing one or more inlets and exit ports for introducing, pre-heating and exhaust the reactants.
Abstract:
A metal substrate is fabricated and coated with a catalyst for ozone conversion of atmosphere passing through the substrate. A plurality of aluminum foil sheets that have been slit, stretched and twisted into a plurality of regularly repeating channels having geometrically shaped openings are serially positioned one on top the other to form a foil stack with channel openings partially blocked by channel walls of overlying foil sheets. Thicker covers with openings at the top and bottom of the stack form a sandwich and the sandwich pleated to form corrugations in a flexible but rigid sandwich substrate. The channel walls are coated with an ozone depleting catalyst which the ozone atmosphere contacts to remove ozone as the ozone atmosphere travels through the stack construction.
Abstract:
A ceramic packing element (500) is formed from a stack of ceramic plates (502) having parallel ribs (504) forming parallel grooves therebetween. The grooves are formed into channels by being contacted with the surface of an opposed plate. The ribs (504) may engage the end surfaces of ribs on an adjacent plate or may be interleaved with the ribs (504) of an opposed plate to form smaller channels. The plates (502) are adhered to each other by firing a stack of plates (502) in the green state or by adhering cured plates (502) by means of an inorganic adhesive such as sodium silicate. Pressure drop and cracking may be reduced, mass transfer and heat efficiencies increased by enlarging the inlets (542) to the channels and by providing perforations through the plates between the ribs (504). Elements may be preassembled into larger units before placement in a column by wrapping metal bands around an assembly of elements.
Abstract:
A hydrogen preparing apparatus is disclosed which reforms a hydrocarbon and/or a hydrocarbon containing an oxygen atom to obtain a hydrogen-containing gas and separates hydrogen from this hydrogen-containing gas. The apparatus includes a porous substrate and a hydrogen separating film which is formed on a predetermined surface portion of the porous substrate and which selectively separates hydrogen, a reforming catalyst for reforming the hydrocarbon being supported in the pores of the porous substrate. A reforming catalyst for reforming the hydrocarbon is supported on a honeycomb carrier, and the hydrogen separating film is arranged on the downstream side of the honeycomb carrier. The surface area of the catalyst per unit volume of the apparatus can be increased, whereby the apparatus can be miniaturized. A hydrogen separating efficiency can also be improved. The hydrogen manufacturing apparatus can be prevented from being damaged by a difference of expansion between the porous substrate and the container.
Abstract:
The process of this invention prepares a hydrogen and carbon monoxide rich gas stream by passing a hydrocarbon feedstock mixed with steam to a tubular reaction with a thin layer of film of a steam reforming catalyst supported on the inner walls thereof; passing the effluent from the tubular reaction to a fixed bed steam reforming catalyst; and withdrawing from the fixed bed a hydrogen and carbon dioxide rich product gas, said tubular reactors being heated burning of fuel. Optionally, the feed to the tubular reactor herein designated the second tubular reactor, may be the effluent from a similar tubular reactor, herein designated the first tubular reactor in heat conducting relationship with hot flue gas from the second reactor.
Abstract:
A natural gas reformer comprising a stack of thermally conducting plates interspersed with catalyst plates and provided with internal or external manifolds for reactants. The catalyst plate is in intimate thermal contact with the conducting plates so that its temperature closely tracks the temperature of the thermally conducting plate, which can be designed to attain a near isothermal state in-plane to the plate. One or more catalysts may be used, distributed along the flow direction, in-plane to the thermally conducting plate, in a variety of optional embodiments. The reformer may be operated as a steam reformer or as a partial oxidation reformer. When operated as a steam reformer, thermal energy for the (endothermic) steam reforming reaction is provided externally by radiation and/or conduction to the thermally conducting plates. This produces carbon monoxide, hydrogen, steam and carbon dioxide. When operated as a partial oxidation reformer, a fraction of the natural gas is oxidized assisted by the presence of a combustion catalyst and reforming catalyst. This produces carbon monoxide, hydrogen, steam and carbon dioxide. Because of the intimate thermal contact between the catalyst plate and the conducting plates, no excessive temperature can develop within the stack assembly. Details of the plate design may be varied to accommodate a variety of manifolding embodiments providing one or more inlets and exit ports for introducing, pre-heating and exhaust the reactants.
Abstract:
A reactor for catalytically processing gaseous fluids including fluid-path forming elements spaced from each other and forming a plurality of adjacent first and second channels through which fluid flows in opposite directions, with each of the first and second channels having an inlet region and an outlet region where at least the inlet region of the first channel and the outlet region of the second channel are without a catalyst and where each of the first and second channels have one region other than its inlet and outlet regions provided with a catalyst, with the inlet region of the first channel and the outlet region of the second channel providing for heat exchange between the first and second channels.
Abstract:
A hollow fiber contactor and process for fluid treatment having forced circulation with entry of fluid to be treated through the open ended lumen of a porous input hollow fiber having its opposite end closed and exit of treated fluid through the open ended lumen of an adjacent or nearby porous output hollow fiber having its opposite end closed. Fluid to be treated passes through the porous wall of an input hollow fiber, passes in contact with a treatment medium between the input and output hollow fibers forming treated fluid which passes through the porous wall of an output hollow fiber and exits the process. This invention provides high contact with treatment medium between the hollow fibers, especially suitable for selective sorption for gas purification or separation and for conduct of catalytic reactions.
Abstract:
An integrated reactor is capable of mixing, reacting, and/or sparging two or more fluids. The reactor is preferably formed of a porous element and a housing formed of at least two inlets and an outlet. A catalyst may be incorporated into the porous element.