Abstract:
A method is disclosed for producing a vacuum and for separating condensable components present in vapor which accumulates during the production of a polymer by melt-phase polycondensation under vacuum. Vapor produced during the production of polymers by melt-phase polycondensation in at least one reaction step under vacuum is drawn of by at least one steam jet vacuum pump with a down stream injection condenser. The steam jet vacuum pump is driven with alkylene carbonate in vapor form and liquid alkylene carbonate is then supplied to the injection condenser as coolant.
Abstract:
There are provided an apparatus and a method for eliminating water and particulate pollutant contained in a waste lubricant. The waste lubricant heated up to a proper temperature is injected into a vacuum chamber through a nozzle, the vacuum chamber maintaining a predetermined degree of vacuum. The water contained in the waste lubricant is vaporized according to a relationship between a vaporizing temperature of the waste lubricant and a vaporizing temperature of the water contained in the waste lubricant. The vaporized water is transformed into condensate water while passing through a condenser, and is stored in a water storage container. In addition, the waste lubricant, from which water is eliminated, is introduced into a waste lubricant discharging chamber by discharging means, and is passed through an electrostatic separator by an oil pump, to collect particulate pollutant. Two electrodes, each having a polarity opposite to each other, are provided inside the electrostatic separator, and are applied with a high voltage by a high-voltage generating unit, so as to form a strong electric field in a space between the two electrodes, in which the waste lubricant is located, and collect particulate pollutant contained in the waste lubricant by the electrostatic force in the electric field.
Abstract:
Apparatus for producing a carbon structure at least including two electrodes 11 and 12 having forefront portions opposed to each other, and a power supply 18 for applying a voltage between the electrodes 11 and 12 so that discharge plasma is produced in a discharge area between the electrodes 11 and 12. The apparatus for producing a carbon structure further including a magnetic field generating unit 20 to 23 for forming at least a magnetic field including multidirectional lines of magnetic force or a magnetic field including a component parallel with the traveling direction of a discharge current, in an area where the discharge plasma is generated. In addition, a method for producing a carbon structure, using such an operation.
Abstract:
Process for incinerating refuse derived fuels to obtain fuel gas therefrom by thermal cracking, comprising the following steps: subjecting the material to deaeration; advancing a bed of material within a vacuum environment insulated from the outside (thermal cracking chamber) and in which a temperature of between 400 DEG C. and 600 DEG C. is maintained by the countercurrent flow of hot gases which lap the material; feeding the material which has passed through the thermal cracking chamber to a reactor in order to be subjected to a temperature of between 1200 DEG C. and 1800 DEG C.; in proximity ot the entry end of said thermal cracking chamber, drawing off the gases generated by the thermal cracking together with the gases which have lapped the bed of material, in order to maintain the thermal cracking chamber under vacuum; feeding the drawn-off gases to the discharge conduit for the gases generated in the reactor; purifying and filtering the gases obtained in this manner for their use as fuel gases.
Abstract:
This invention relates to a vacuum processing apparatus having vacuum processing chambers the insides of which must be dry cleaned, and to a method of operating such an apparatus. When the vacuum processing chambers are dry-cleaned, dummy substrates are transferred into the vacuum processing chamber by substrates conveyor means from dummy substrate storage means which is disposed in the air atmosphere together with storage means for storing substrates to be processed, and the inside of the vacuum processing chamber is dry-cleaned by generating a plasma. The dummy substrate is returned to the dummy substrate storage means after dry cleaning is completed. Accordingly, any specific mechanism for only the cleaning purpose is not necessary and the construction of the apparatus can be made simple. Furthermore, the dummy substrates used for dry cleaning and the substrates to be processed do not coexist, contamination of the substrates to be processed due to dust and remaining gas can be prevented and the production yield can be high.
Abstract:
This invention relates to a vacuum processing apparatus having vacuum processing chambers the insides of which must be dry cleaned, and to a method of operating such an apparatus When the vacuum processing chambers are dry-cleaned, dummy substrates are transferred into the vacuum processing chamber by substrates conveyor means from dummy substrate storage means which is disposed in the air atmosphere together with storage means for storing substrates to be processed, and the inside of the vacuum processing chamber is dry-cleaned by generating a plasma. The dummy substrate is returned to the dummy substrate storage means after dry cleaning is completed. Accordingly, any specific mechanism for only the cleaning purpose is not necessary and the construction of the apparatus can be made simple Furthermore, the dummy substrates used for dry cleaning and the substrates to be processed do not coexist, contamination of the substrates to be processed due to dust and remaining gas can be prevented and the production yield can be high.
Abstract:
A vacuum processing apparatus which includes a cassette mount table for holding at least one cassette, a conveying structure which includes a robot for conveying a wafer held on the cassette mount table, a vacuum loader which includes an additional robot, an additional conveying structure and a plurality of lock chambers.
Abstract:
A method and apparatus for processing substances by coexisting an object matter with water held at temperature above 200° C. to carry out chemical reactions such as severing of molecular chains, recombination and decoupling occluded molecules, oxidation and reduction reactions. A mixture phase containing an object matter and a liquid medium is subjected to a super-critical state of a medium in a super-critical reaction apparatus, where feed inlets are provided on the upper end, and a product outlet is provided on the lower end. In the interior of the apparatus, the super-critical zone is provided above and the sub-critical zone is provided below, and the object matter and the reaction products are progressed towards a lower end of a reaction chamber in one direction.
Abstract:
An improved chemical vapor deposition reaction chamber having an internal support plate to enable reduced pressure processing. The chamber has a vertical-lateral lenticular cross-section with a wide horizontal dimension and a shorter vertical dimension between bi-convex upper and lower walls. A central horizontal support plate is provided between two lateral side rails of the chamber. A large rounded rectangular aperture is formed in the support plate for positioning a rotatable susceptor on which a wafer is placed. The shaft of the susceptor extends downward through the aperture and through a lower tube depending from the chamber. The support plate segregates the reaction chamber into an upper region and a lower region, with purge gas being introduced through the lower tube into the lower region to prevent unwanted deposition therein. A temperature compensation ring is provided surrounding the susceptor and supported by fingers connected to the support plate. The temperature compensation ring may be circular or may be built out to conform to the rounded rectangular shape of the support plate aperture. The ring may extend farther downstream from the susceptor than upstream. A separate sacrificial quartz plate may be provided between the circular temperature compensation ring and the rounded rectangular aperture. The quartz plate may have a horizontal portion and a vertical lip in close abutment with the aperture to prevent devitrification of the support plate. A gas injector abuts an inlet flange of the chamber and injects process gas into the upper region and purge gas into the lower region. The gas injector includes a plurality of independently controlled channels disposed laterally across the chamber, the channels merging at an outlet of the injector to allow mixing of the adjacent longitudinal edges of the separate flows well before reaching the wafer.
Abstract:
Apparatus for producing a carbon structure at least including two electrodes 11 and 12 having forefront portions opposed to each other, and a power supply 18 for applying a voltage between the electrodes 11 and 12 so that discharge plasma is produced in a discharge area between the electrodes 11 and 12. The apparatus for producing a carbon structure further including a magnetic field generating unit 20 to 23 for forming at least a magnetic field including multidirectional lines of magnetic force or a magnetic field including a component parallel with the traveling direction of a discharge current, in an area where the discharge plasma is generated. In addition, a method for producing a carbon structure, using such an operation.