Abstract:
An apparatus for manipulating in-vehicle devices using a steering wheel includes a reference signal input unit for inputting a reference signal to a driver through a charged plate, a touch sensor for receiving the reference signal through human body communication and for detecting a touch of the driver, and a controller for generating a control signal on the basis of the results detected by the touch sensor.
Abstract:
A vehicle including a system for intuitive control of a vehicle component is disclosed. The vehicle may include the vehicle component, a sensor unit associated with the vehicle component that is configured to detect a touch command applied to the sensor unit by a user, a controller, and a drive. The controller may be operatively coupled to the sensor unit and the drive may be coupled to the vehicle component. The controller may generate a control signal based on the touch command applied to the sensor unit and may cause the drive to alter a condition of the vehicle component in response to the control signal.
Abstract:
The invention relates to an operating unit (10) for an electrical apparatus, in particular a vehicle component such as, for example, a heating, ventilation and/or air conditioning installation, which is provided with a housing (12) having a front wall (14), with an operating strip (18) that projects beyond the front wall (14), which has an elongated operating surface (20) with a plurality of adjacently arranged operating fields (22, 24, 26, 28, 30), and with a support element (32) for the operating strip (18), which is arranged in the housing (12). The operating strip (18) is connected to the support element (32) by means of connecting webs (48) which protrude in the respective areas between the operating panels (22, 24, 26, 28, 30) of the operating strip (18). Flexible webs (50), which protrude from the operating strip (18) for each operating field and are connected to the support element (32), are arranged between the connecting webs (48), namely in an elastic manner and more flexible than the connections of the operating strip (18) to the support element (32) via the connecting webs (48). At least one operating field actuation sensor (70, 72) for detecting a local bending of the operating strip (18), when a manual actuating force is exerted on a operating field (22, 24, 26, 28, 30) of the operating strip (18), is arranged on the support element (32) for each flexible web (50). In addition, the operating unit (10) comprises an evaluation and operating unit (78) for receiving the signals of the operating panel actuating sensors (70, 72) and for determining, on the basis of said signals, the operating field (22, 24, 26, 28, 30) on which, upon manual actuation of the operating strip (18), the finger of one hand is applied, and for triggering an apparatus function that is associated with the respective operating field (22, 24, 26, 28, 30) corresponding to the determined operating field (22, 24, 26, 28, 30).
Abstract:
An input apparatus for a vehicle includes a cover member for covering an upper part of an input unit installed in a center plate provided between a driver seat and a passenger seat, wherein the cover member moves forward from a center console located in a back part of the center plate to cover the upper part of the input unit.
Abstract:
A vehicular heads-up-display system includes a windshield-mountable partially reflective mirror that allows a vehicle user to view material displayed on the partially reflective mirror while, at the same time, viewing the road ahead without obstruction. A mount configured to accept a portable electronic device, such as a smartphone, may be situated to project the display of the portable electronic device to the windshield mountable partially reflective mirror when mounted in a vehicle. A tactile input device, including a wireless interface for entry of and transmission of input from a vehicle user to a smartphone may be configured for mounting on a vehicle steering wheel.
Abstract:
A user interface for a vehicle is disclosed. The user interface comprises a vehicle panel having a proximity sensor, a first photoluminescent portion and a second photoluminescent portion. The user interface further includes a first light source configured to selectively activate the first photoluminescent portion and a second light source configured to selectively activate the second photoluminescent portion. The second photoluminescent portion is configured to reveal a symbol in a backlit configuration in response to the activation of the second light source.
Abstract:
A steering wheel for a vehicle, including front and back semi-toroidal surfaces joined at their outer circumferences by a light guide in the shape of a circular rim, and enclosing a toroidal volume having a cavity therein, a PCB mounted in the cavity, an alternating array of invisible-light emitters and receivers mounted on the PCB, such that the light guide projects invisible-light beams emitted by the emitters radially outward of the steering wheel, and directs reflections of the projected light beams off of a driver's hands radially inward to the steering wheel toward the receivers, and a processor connected to equipment mounted away from the steering wheel, the processor synchronously activating each emitter with a respective neighboring receiver, identifying a driver's hand gestures along an arc of the light guide based on reflected light detected by the receivers, and controlling the equipment in response to the thus-identified hand gestures.
Abstract:
A method is provided for processing an actuation of an operating element in a motor vehicle, particularly of an operating lever, wherein the operating element can be actuated at least by the driver of the motor vehicle. A plurality of sensors are arranged on the operating element, which sensors are at least partially activated when the operating element is actuated. The time sequence of the activation of the sensors is detected when the operating element is actuated, and, based on the time sequence, it is determined whether an undesired actuation is occurring, undesired actuations including unintended actuations and/or actuations by a front-seat passenger. In the event of an undesired actuation, the implementation of one or more actions coupled to the actuation of the operating element in the vehicle is blocked.
Abstract:
A device for operating multiple functions includes an operating element and a base. The base has side bearings and pins. The operating element has rotational axle end sections mounted in guide slots of the side bearings, respectively, to pivotably be mounted to the base about an axis of rotation to thereby be movable between at least two positions. At least one of the positions is assigned to a switching function. The operating element is further mounted to the base on a centered bearing between the side bearings of the base, and the operating element is supported on the pins of the base.
Abstract:
An in-vehicle operation apparatus has an operation switch, a candidate selection operation unit, and a command assignment operation unit, all of which are operable by a user. The operation switch may control multiple in-vehicle devices based on a desired command assigned thereto. In particular, the candidate selection operation unit selects a plurality of candidate commands from among a plurality of commands respectively for in-vehicle devices. The command assignment operation unit selects and assigns the desired command from among the plurality of candidate commands to the operation switch. Accordingly, the operation switch controls the in-vehicle device associated with the desired command. Thus, the apparatus reduces the amount of operation switches required and allows the user to easily select and assign a command to the operation switch for controlling a desired in-vehicle device.