Abstract:
A method includes trajectories of setpoints controlling a motor mechanism and auxiliary unit, the trajectory describing variation of the setpoint by position of the mobile system, the trajectories being calculated with respect to objectives according to an optimization algorithm, said method comprising: storing an approximate profile of the route as segments of straight lines, forming positions sampled along the route, a sampled position corresponding to passage from one segment to the following segment; sampling the profile according to a spatial pitch, forming a series of positions sampled along the route; the trajectories being recalculated at each sampled position by the optimization algorithm, the setpoints being constant over a given segment, a simulation predicting the energy environment of the mobile system at each sampled position as a function of the setpoints and the profile of the route, the optimization algorithm taking the simulation result to calculate the setpoints.
Abstract:
The present application relates to a clean power generation and distribution system for a train. The system comprises a charging car and a storage car mechanically and electrically coupled together. Power is generated from the charging car as a result of the movement of the train along the track. Power is passed to the storage car for storage and distribution of the energy. The storage car utilizes one or more batteries. The storage car permits for one or more outlet boxes or detachable battery packs to allow for operators around the storage car to access the stored energy.
Abstract:
According to one embodiment, an electrode includes a current collector and an active material-including layer. The active material-including layer includes a first layer and a second layer. The first layer is provided on a surface of the current collector and includes lithium titanium oxide having a spinel structure. The second layer is provided on the first layer and includes a monoclinic β-type titanium composite oxide.
Abstract:
The present invention includes a position detection unit; a regenerating-condition detection unit; a train-line information holding unit that holds therein information on a section in which a train is more likely to use a brake; an air-conditioning set-value holding unit that holds therein a temperature set value of an air conditioner; and a target-temperature control unit that decides a target temperature. In a regeneration-preparation condition in which a train is running through a position at which the distance between the position and a section in which a train is more likely to use a brake is equal to or less than a given value and in which the train does not use a regenerative brake, the target-temperature control unit decides a value, generated by adding a predetermined value to the temperature set value, as the target temperature.
Abstract:
The disclosure includes a system and method for performing one or more vehicle functions associated with a vehicle. The system includes a processor and a memory storing instructions that, when executed, cause the system to: receive sensor data indicating that a vehicle has arrived at a destination location; determine a synchronized arrival time describing when the vehicle arrived at the destination location, the synchronized arrival time determined based in part on the sensor data; and determine one or more vehicle functions associated with the vehicle based in part on the synchronized arrival time.
Abstract:
A high-voltage energy storage module for supplying a voltage, in particular to a motor vehicle, includes at least two storage cells and at least one electrically conductive connection between two poles of different storage cells. The individual connection consists of multiple adjacently arranged bonding wires, and each bonding wire is secured to the two poles by means of a wire bonding.
Abstract:
This fuel cell vehicle comprises a DC-DC converter constituted of a power input portion, reactors, and switching circuit sections. Connecting portions of the power input portion to the reactors and connecting portions of the reactors to the switching circuit sections in the DC-DC converter are all arranged side by side along a forward-backward direction of the vehicle, and arranged in this state on the side of one side surface of the DC-DC converter on one of the right side and left side of the vehicle.
Abstract:
A vehicular thermo-control device adjusts a temperature of a battery. The device has a primary system through which cooling water circulates, and a secondary system through which a refrigerant circulates. The primary system has a heat exchanger which performs heat exchange between the battery and the cooling water, and a heat exchanger which performs heat exchange between the cooling water and an ambient air. The secondary system is a refrigerating cycle. Both heat exchangers on a high temperature side and a low temperature side of the refrigerating cycle are thermally coupled with the primary system. Only one heat exchanger provides heat exchange with the ambient air. The pump of the primary system can switch circulating direction of the cooling water. A controller controls devices to perform cooling and heating operation.
Abstract:
An electrically-driven vehicle includes: a battery; an induction motor connected to the battery; a synchronous motor connected to the battery that is connected to the induction motor; and at least one electronic control unit configured to change a slip frequency command of the induction motor based on a predetermined frequency of current fluctuation when a temperature of the battery is low such that an amplitude of the current fluctuation increases, the current fluctuation being any one of current fluctuation of a battery current or current fluctuation of a battery-related current that relates to the battery current.