Abstract:
Systems and methods for powering an airborne transport vehicle from a ground power supply are provided. One system is a hovercraft power system having a ground power supply coupled with at least one on-board DC-DC power converter, wherein the on-board DC-DC power converter is positioned on-board a hovercraft. The hovercraft power system further includes a power cord tethered to the hovercraft, wherein the power cord is capable of delivering at least 100 kilowatts (kW) of power from the ground power supply to the hovercraft. The hovercraft power system also includes a tether dispenser configured to dispense or retract the power cord tethered to the hovercraft.
Abstract:
Systems and methods using an Unmanned Aerial Vehicle (UAV) to obtain data capture at a cell site for developing a three dimensional (3D) thereof include causing the UAV to fly a given flight path about a cell tower at the cell site; obtaining data capture during the flight path about the cell tower, wherein the data capture includes a plurality of photos or video subject to a plurality of constraints, wherein the plurality of photos are obtained by a plurality of cameras which are coordinated with one another; and subsequent to the obtaining, processing the data capture to define a three dimensional (3D) model of the cell site based on one or more objects of interest in the data capture.
Abstract:
To provide a system comprising: an unmanned aerial vehicle; and a free space location database, wherein the unmanned aerial vehicle has: a camera that is capable of 360°-image capturing on a horizontal plane; a positioning apparatus that measures a location of the unmanned aerial vehicle; a direction measuring apparatus that measures a direction of the unmanned aerial vehicle; an altitude measuring apparatus that measures an altitude of the unmanned aerial vehicle; and an information transmitting unit that transmits, to the free space location database, camera image data captured by the camera at every predetermined altitude, and the location, direction and altitude of the unmanned aerial vehicle at time of image capturing by the camera, and based on the camera image data, and the location, direction and altitude of the unmanned aerial vehicle, the free space location database corrects 3D data including terrain information to generate free space location data.
Abstract:
Disclosed is a system and method for facilitating testing of a plurality of devices using a drone. At first, a locating module locates position of the drone relative to the plurality of devices. Further, a receiving module receives an image, of a device of the plurality of devices, from image capturing unit of the drone. Then, a comparing module compares the image with a reference image corresponding to the device. Based on the comparison, a determining module determines an action to be performed for testing the device. Further, a facilitating module facilitates the testing by enabling a snout associated with the drone to perform the action on the device.
Abstract:
A method with a tethered Unmanned Aerial Vehicle (UAV) associated with a cell site includes causing the UAV to fly at or near the cell site while the UAV is tethered at or near the cell site via a connection, wherein flight of the UAV at or near the cell site is constrained based on the connection; and performing one or more functions via the UAV at the cell site while the UAV is flying tethered at or near the cell site. The one or more functions can include functions related to a cell site audit. Alternatively, the one or more functions include functions related to providing wireless service via the UAV at the cell site, wherein data and/or power is transferred between the UAV and the cell site to perform the wireless service.
Abstract:
A drone system includes a drone that includes a propulsion system, a flight stabilizer system, and an air payload interface unit, and a camera system, wherein the camera system includes a camera stabilizing unit, and a ground support system to which the drone is detachably coupled through a tether unit, and for providing electrical power to the propulsion system. The drone system further includes a ground payload interface unit for receiving and transmitting command and telemetry information to the air payload interface unit through the tether unit, and a controlling device for controlling the propulsion system and the camera system through the tether unit.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether may be a conductive tether that can transmit electricity and/or electrical signals back and forth between the aerial vehicle and the ground station. The tether termination mount may include one or more gimbals that allow for the tether termination mount to rotate about one or more axis. In a further aspect, the tether termination mount may include a slip ring that allows for rotation of the tether without twisting the tether.
Abstract:
An armored vehicle includes: a basic armored vehicle having a predetermined basic external armor; a modularized armor structure exchangeably attached to the basic external armor; and an unmanned aerial vehicle loaded on the modularized armor structure. The modularized armor structure includes: an unmanned aerial vehicle loading section configured to load the unmanned aerial vehicle; an armoring material structure formed of armoring material; and an attaching section used to exchangeably attach the modularized armor structure to the basic armored vehicle.
Abstract:
A method involves operating an aerial vehicle in a hover-flight orientation. The aerial vehicle is connected to a tether that defines a tether sphere having a radius based on a length of the tether, and the tether is connected to a ground station. The method involves positioning the aerial vehicle at a first location that is substantially on the tether sphere. The method involves transitioning the aerial vehicle from the hover-flight orientation to a forward-flight orientation, such that the aerial vehicle moves from the tether sphere. And the method involves operating the aerial vehicle in the forward-flight orientation to ascend at an angle of ascent to a second location that is substantially on the tether sphere. The first and second locations are substantially downwind of the ground station.
Abstract:
A method may involve operating an aerial vehicle to travel along a first closed path on a tether sphere while oriented in a crosswind-flight orientation. A tether may be connected to the aerial vehicle on a first end and may be connected to a ground station on a second end. Further, the tether sphere may have a radius corresponding to a length of the tether. The method may further involve while the aerial vehicle is in the crosswind-flight orientation, operating the aerial vehicle to travel along a second closed path on the tether sphere, such that a speed of the aerial vehicle is reduced. And the method may involve after or while the speed of the aerial vehicle is reduced, transitioning the aerial vehicle from traveling along the second closed path while in the crosswind-flight orientation to a hover-flight orientation.