Abstract:
A tilt structure includes a shaft section formed on a substrate section, a tilt structure film having one end formed on an upper surface of the shaft section, and the other end bonded to the substrate section, and a thin film section provided to the tilt structure film, located on a corner section composed of the upper surface of the shaft section and a side surface of the shaft section, and having a film thickness thinner than the tilt structure film, the tilt structure film is bent in the thin film section, and an acute angle is formed by the substrate section and the tilt structure film.
Abstract:
The present invention relates to a design and microfabrication method for microgrippers that are capable of grasping micro and nano objects of a large range of sizes and two-axis force sensing capabilities. Gripping motion is produced by one or more electrothermal actuators. Integrated force sensors along x and y directions enable the measurement of gripping forces as well as the forces applied at the end of microgripper arms along the normal direction, both with a resolution down to nanoNewton. The microfabrication method enables monolithic integration of the actuators and the force sensors.
Abstract:
A micromechanical sensor apparatus has a movable gate and a field effect transistor. The field effect transistor has a drain region, a source region, an intermediate channel region with a first doping type, and a movable gate which is separated from the channel region by an intermediate space. The drain region, the source region, and the channel region are arranged in a substrate. A guard region is provided in the substrate at least on the longitudinal sides of the channel region and has a second doping type which is the same as the first doping type and has a higher doping concentration.
Abstract:
This invention relates generally to capacitive micromachined ultrasonic transducers (CMUTs), particularly to those comprising diamond or diamond like carbon membranes and a method of microfabrication of such CMUTs, wherein the membrane of diamond or diamond like carbon is attached to the substrate by plasma-activated direct bonding of an interlayer of high temperature oxide (HTO).
Abstract:
A method for fabricating a carbon nanotube film floating on a bottom is provided. The fabrication method of a carbon nanotube film comprises: forming electrodes on a substrate; arranging a suspension comprising a plurality of carbon nanotubes on the electrodes; and arranging the carbon nanotubes on the electrodes by applying a voltage to the electrodes.
Abstract:
A plurality of three-dimensional structure configuring devices, each including an elastic body in which micro three-dimensional structure elements fixed to a substrate member are placed so as to be covered therewith and which is fixed to the substrate member, are placed within a film-like elastic body with the substrate members thereof spaced apart from one another so as to configure a three-dimensional structure. Thereby, the plurality of three-dimensional structure configuring devices can be placed with desired intervals of arrangement and in desired positions within the film-like elastic body and so that various specifications can be addressed.
Abstract:
A micro fluidic device and method for capacitive sensing. The device includes a fluid channel including an inlet at a first end and an outlet at a second end, a cavity region coupled to the fluid channel, and a polymer based membrane coupled between the fluid channel and the cavity region. Additionally, the device includes a first capacitor electrode coupled to the membrane, a second capacitor electrode coupled to the cavity region and physically separated from the first capacitor electrode by at least the cavity region, and an electrical power source coupled between the first capacitor electrode and the second capacitor electrode and causing an electric field at least within the cavity region. The polymer based membrane includes a polymer.
Abstract:
A heat-sensitive apparatus includes a substrate with a top surface, one or more bars being rotatably joined to the surface and having bimorph portions, and a plate rotatably joined to the surface and substantially rigidly joined to the one or more bars. Each bimorph portion bends in response to being heated. The one or more bars and the plate are configured to cause the plate to move farther away from the top surface in response to the one or more bimorph portions being heated.
Abstract:
A wafer level sensing package and manufacturing process thereof are described. The process includes providing a wafer having sensing chips, in which each sensing chip has a sensing area and pads; forming a stress release layer on a wafer surface; cladding a photoresist layer on the stress release layer; patterning the photoresist layer to expose the pads and a portion of the stress release layer, without exposing opening areas of the sensing areas; forming a conductive metal layer of re-distributed pads on the portion of the stress release layer exposed by the photoresist layer; removing the photoresist layer; forming a re-cladding photoresist layer on the stress release layer and the conductive metal layer; forming holes in the re-cladding photoresist layer above the re-distributed pad area; and forming conductive bumps in the holes to electrically connect to the conductive metal layer.