Abstract:
Provided is a resin composition for gas injection molding including polyamide resin, inorganic filler having a pH of 9 or more and an average particle diameter of 20 nm or less, and inorganic fibers having a number-average fiber length of from 50 μm to 400 μm. In addition, a pipe formed by subjecting the resin composition to gas injection molding has, in an inside thereof, a hollow continuous portion for a fluid flow path. Therefore, in the gas injection molding of the pipe using the resin composition, an inner peripheral surface of the pipe can be finished into a smooth flat surface, and even when a liquid having acidity is circulated in the hollow continuous portion of the pipe, the pipe can withstand the acidity.
Abstract:
There is provided a resin composite material in which problems, such as a decrease in mechanical strength of a resin and a decrease in processabilities due to an increase in resin viscosity, are overcome by using a small amount of CNTs, and in which, in spite of using a small amount of CNTs, the functions derived from the formation of a composite of CNTs and other effective functions can be exhibited.
Abstract:
A transparent conductive film. The film comprises a transparent polymer comprising fused latex polymer particles. A plurality of nanowires comprising silver are partially dispersed in the transparent polymer. Devices employing the transparent conductive film and methods of making the devices are also disclosed.
Abstract:
A polyamide resin composition includes (A) a polyamide resin in an amount of about 30 to about 80% by weight, (B) inorganic filler in an amount of about 10 to about 60% by weight, (C) white pigment in an amount of about 5 to about 50% by weight; and (D) photostabilizer in an amount of about 0.05 to about 2 parts by weight and (E) inorganic fine particles in an amount of about 0.05 to about 3 parts by weight, wherein each of (D) and (E) is based on about 100 parts by weight of the polyamide resin (A). The polyamide resin composition can have good light reflectance and yellowing resistance.
Abstract:
A metal/plastic slide bearing composite material (2) has a metallic support layer (4), especially of steel, and a porous carrier layer (6), especially a carrier layer (6) applied by sintering from metallic particles (7). A polymer-based slide layer material (8) completely fills the pores of the carrier layer (6) and has fillers that improve the tribological properties. The polymer basis is PTFE. The sliding layer material (8) has 0.1-5% by mass of carbon nanotubes with an external tube diameter of
Abstract:
A method for producing a nanocomposite material reinforced by alumina Al2O3 nanofibers involving synthesizing the alumina Al2O3 nanofibers directly from a melt comprising molten metallic aluminum, the method comprising a controlled liquid phase oxidation of the melt, wherein the synthesized alumina Al2O3 nanofibers have a diameter between 3 and 45 nm and length of more than 100 nm and combining the synthesized alumina Al2O3 nanofibers with a polymer matrix to produce the nanocomposite material reinforced by the alumina Al2O3 nanofibers. The alumina Al2O3 nanofibers may be monocrystalline alumina Al2O3 nanofibers. The alumina Al2O3 nanofibers and the molecules of the polymer may be aligned.
Abstract translation:一种由氧化铝Al2O3纳米纤维增强的纳米复合材料的制造方法,其包括直接由熔融金属铝的熔融物合成氧化铝Al 2 O 3纳米纤维,所述熔融金属铝的熔融控制液相氧化,其中合成的氧化铝Al 2 O 3纳米纤维的直径为3 和45nm,长度大于100nm,并将合成的氧化铝Al2O3纳米纤维与聚合物基体结合,生产由氧化铝Al2O3纳米纤维增强的纳米复合材料。 氧化铝Al2O3纳米纤维可以是单晶氧化铝Al2O3纳米纤维。 氧化铝Al2O3纳米纤维和聚合物的分子可以对齐。
Abstract:
Single pellets of a thermoplastic resin containing long glass fibers and a conductive filler are set forth that enable molded articles made from these pellets to exhibit conductivity and, at the same time, high mechanical properties. These pellets have mechanical properties that are substantially equivalent to non-conductive pellets of a thermoplastic resin containing same loading of long glass and provide conductivity that is substantially equivalent to articles obtained by blending two kinds of pellets, one pellet having a conductive filler and the other pellet one containing long glass fibers. The pellets include a thermoplastic resin, a long fiber reinforcing filler and a conductive additive dispersed in the pellet.
Abstract:
Polyimide resin compositions that contain an aromatic polyimide, graphite, and acicular titanium dioxide are found to exhibit high thermal oxidative stability. Such compositions are especially useful in molded articles that are exposed to high temperatures, such as bushings, bearings, and seal rings that are used in aerospace, transportation, and materials handling applications.
Abstract:
An architectural paint is disclosed which comprises a film-forming binder polymer, cotton fibers, and glass bubbles. The paint, in some embodiments, is capable of covering defects in a wall surface.
Abstract:
The invention relates to a nanocomposite material that contains a polymer binder, a filler and a fraction of nanoparticles, characterized in that the fraction of nanoparticles comprises multi-layered carbon particles having a toroidal shape with a size of 15 to 150 nm, wherein the ratio between the outer diameter and the thickness of the torus body is in a range of (10−3):1. This nano-modification makes it possible to obtain an efficient compaction and hardening of the nanocomposite material close to the filler/binder inter-phase barrier, and accordingly to increase the average density, elasticity, hardness and resistance of the material. The invention can be used for making various parts and articles for use in mechanical engineering and transport, including instrument holders for the precise surface treatment of parts.