Abstract:
Embodiments of the present invention include hierarchically-dimensioned, microfiber-based dry adhesive materials featuring dense arrays of microfibers with free tips terminating in numerous microfibrils. In certain embodiments, more than two levels of microfiber-dimension hierarchy may be employed, each dimension involving smaller microfibrils emanating from the tips of the microfibers or microfibrils of the next highest dimensional level. Various additional embodiments of the present invention are directed to methods for preparing hierarchically-dimensioned, microfiber-based dry adhesive materials. These methods include single-pass or multi-pass imprint-lithography, pattern masking and etching, and imprinting fiber-embedded substrates followed by etching.
Abstract:
An on/off reversible adhesive mechanism, and method for fabricating same. The adhesive mechanism is a hierarchical system comprised of a micro-scale compliant surface having one or more nano-structures thereon, wherein the compliant surface is moved by applying a magnetic field either to engage the nano-structures with an adhering surface or to remove the nano-structures from the adhering surface.
Abstract:
A fabricated microstructure comprising at least one protrusion capable of providing an adhesive force at a surface of between about 60 and 2,000 nano-Newtons. A stalk supports the protrusion at an oblique angle relative to a supporting surface. The microstructure can adhere to different surfaces.
Abstract:
A method of forming an adhesive force includes removing a seta from a living specimen, attaching the seta to a substrate, and applying the seta to a surface so as to establish an adhesive force between the substrate and the surface. The seta is applied to the surface with a force perpendicular to the surface. The seta is then pulled with a force parallel to the surface so as to preload the adhesive force of the seta.
Abstract:
A fabricated microstructure comprising at least one protrusion capable of providing an adhesive force at a surface of between about 60 and 2,000 nano-Newtons. A stalk supports the protrusion at an oblique angle relative to a supporting surface. The microstructure can adhere to different surfaces.
Abstract:
The present disclosure relates to gripping surfaces and devices comprising the same, wherein the gripping surface comprises a shape tunable surface microstructure, wherein the height, width and spatial periodicity of the microstructures corresponds to an integer multiple of Schallamach wave amplitudes and wavelengths of a target surface, wherein the device microstructures and induced Schallamach waves are entrained by applying strain to the device.
Abstract:
Provided are systems and methods for the post-treatment of dry adhesive microstructures. The microstructures may be post-treated to comprise mushroom-like flaps at their tips to interface with the contact surface. In some aspects, a change in material composition of the microstructures in a dry adhesive may affect mechanical properties to enhance or diminish overall adhesive performance. For example, conductive additives can be added to the material to improve adhesive performance. In other aspects, microstructures comprising conductive material may allow for pre-load engagement sensing systems to be integrated into the microstructures.
Abstract:
Embodiments of the present invention relate to continuous, roll-to-roll methods of manufacturing dry adhesive products. A method for producing a dry adhesive product includes providing a fiber-forming composition to a fiber-forming means; passing a backing material having a first surface and a second surface along a first roller to thereby advance the backing material to the fiber-forming means; allowing the fiber-forming means to form a dry adhesive layer made from the fiber-forming composition on the first surface of the backing material; and passing the backing material having the dry adhesive layer thereon along a second roller.
Abstract:
Provided are systems and methods for the post-treatment of dry adhesive microstructures. The microstructures may be post-treated to comprise mushroom-like flaps at their tips to interface with the contact surface. In some aspects, a change in material composition of the microstructures in a dry adhesive may affect mechanical properties to enhance or diminish overall adhesive performance. For example, conductive additives can be added to the material to improve adhesive performance. In other aspects, microstructures comprising conductive material may allow for pre-load engagement sensing systems to be integrated into the microstructures.