Abstract:
This invention provides a release agent for low speed casting, which does not pollute working environment, has a superior running property and lubricating property and further shows a superior cleanability of a die. An aqueous release agent for a low speed injection die casting comprises as main components an inorganic lubricant, spherical resin particles having an average particle size of 0.1-10 &mgr;m, an organic carboxylic acid metal salt and water.
Abstract:
The interface between a moving conveyor belt and a work piece can be lubricated using an air driven stream of finely divided droplets of a lubricant composition. Droplets of a preferred size are directed by the air stream onto the conveyor with little waste of lubricant off the conveyor. The lubricant provides a very low coefficient of friction and little or no stress cracking in the containers. Using a low pressure and low flow rate air stream in conjunction with a low flow rate liquid lubricant attains the useful particle size in the lubricant add on spray. The liquid lubricant is sheared by the effect of the air flow creating the desirable droplet size and pattern of lubricant on the conveyor. A food container conveyor device having improved lubricant properties can be lubricated using a lubricant composition that can become ingested by a user from a food or a container for the food, can come into incidental contact or direct content with a food composition, can be incorporated at measurable concentrations into the food, or can be used generally on food conveyor surfaces wherein the food is exposed to the lubricant.
Abstract:
It is possible to make very concentrated solutions of N-coco-, N-oleyl- or N-tallow-propylenediamine acetate which can be diluted without formation of gels or of lumps in a water/dissolving agent solvent. A simple dilution test is given which allows the suitable compositions to be selected. Use of their diluted solutions, in particular for the lubrication of bottles on conveyor lines.
Abstract:
A lubricant blend for use on a wire exposed to an HFC refrigerant. The lubricant blend includes an organic phase and an aqueous phase. The organic phase includes a lubricant which has a defined solubility in the HFC refrigerant and a lubricity suitable for application to the wire. The organic phase also includes a solvent in which the lubricant is soluble and, optionally, a hydrophobic surfactant. The aqueous phase includes a surfactant which forms an emulsion between the organic phase and the aqueous phase, which has a defined solubility in a non-CFC containing refrigerant. A magnetic wire lubricant, method of making the lubricant blend, and compressor using the lubricant blend are also described.
Abstract:
A lubricant composition comprises (1) at least one member selected from the group consisting of carboxylic acid compounds each obtained by the addition of an oxyalkylene group to a hydroxyl group of a hydroxy carboxylic acid and alkali metal salts and amine salts thereof; and (2) at least one base oil selected from the group consisting of alkyl benzene, normal paraffin, isoparaffin and null-olefin. The lubricant composition is highly resistant to putrefaction when it is used as a metal-processing oil composition and shows excellent cutting characteristics in the metal-processing, which requires an extremely high lubricating action, such as form-rolling tap and deep hole boring. Moreover, the composition makes operations such as metal-processing operations easy since the liquid obtained by diluting it with water is transparent or translucent.
Abstract:
An object of the present invention is to provide an aquarous rust inhibitor having low toxicity and excellent rust resistance, which contains saturated fatty acid, saturated dicarboxylic acid and salt thereof, derivatives of ethylenediamine tetraacetic acid, tolyltriazole or benzotriazole, fatty acid metal salt, and water.
Abstract:
The invention is a high molecular weight polyether polyol prepared by the reaction of one or more compounds having one or more active hydrogen compounds with one or more alkylene oxides in the presence of a catalyst comprising calcium having counterions of carbonate and a C6-10 alkanoate in a solvent or dispersant which does not contain active hydrogen atoms. The polyether polyol prepared preferably has an equivalent weight of from about 1000 to about 20,000, a polydispersity of 1.3 or less and a residual catalyst level of from about 0 to about 2000 parts per million (ppm). In another embodiment the invention is a process for preparing such high molecular weight polyether polyols. The process comprises first, contacting one or more compounds having one or more active hydrogen atoms with one or more alkylene oxides in the presence of a catalyst. The catalyst comprises calcium having counterions of carbonate and a C6-10 alkanoate in a solvent, wherein the solvent does not contain active hydrogen atoms. The mixture is exposed to conditions at which the alkylene oxides react with the compound containing more than one active hydrogen atoms such that a polyether polyol is prepared which has an equivalent weight of from about 1,000 to about 20,000, a polydispersity of about 1.3 or less and a residual catalyst level of from about 0 to about 1000 (ppm).
Abstract:
Water-in-oil emulsions are disclosed that comprise (a) water; (b) from about 10 to 65% by weight of an oil; and (c) an emulsification system comprising a polysiloxane polyalkyl polyether copolymer and a phthalic anhydride derivative, substantially permanently maintaining the water and oil as an emulsion, the emulsification system and the emulsification system being substantially free from aluminum and zirconium salts, the emulsion being at a pH of from about 5 to 10.
Abstract:
Chain conveyor lubricants, especially for the food industry, which form clear solutions in water and which contain in combination a) at least one compound corresponding to formula (I): in which R1 is a saturated or mono- or polyunsaturated, linear or branched alkyl group containing 6 to 22 carbon atoms, which may optionally be substituted by an —OH, —NH2, —NH—, —CO—, halogen or a carboxyl group, R2 is a carboxyl group containing 2 to 7 carbon atoms, M is hydrogen, alkali metal, ammonium, an alkyl group containing 1 to 4 carbon atoms or a benzyl group, and n is an integer of 1 to 6; b) at least one organic carboxylic acid selected from monobasic or polybasic, saturated or mono- or polyunsaturated carboxylic acids containing 2 to 22 carbon atoms; and, optionally, c) at least one of water, additives, and auxiliaries.
Abstract:
Thermally formed thermoplastic articles can be protected from stress cracking in the presence of stress cracking promoting compounds by forming a shaped article comprising a thermoplastic and a liquid hydrocarbon oil composition. We have found that the liquid hydrocarbon oil composition prevents the stress cracking promoting materials from interacting with the polymeric structure of the stressed container to prevent or inhibit stress cracking in such materials. The methods and compositions of the invention are particularly useful in preventing stress cracking in polyethylene terephthalate beverage containers during bottling operations during which the bottle is contacted with aqueous and non-aqueous materials such as cleaners and lubricants that can interact with the polyester to cause stress cracking particularly in the container base. A process for lubricating a container, such as a beverage container, or a conveyor for containers, by applying to the container or conveyor, a thin continuous, substantially non-dripping layer of a liquid lubricant. The process provides many advantages compared to the use of a conventional dilute aqueous lubricant.