Abstract:
A variable cam timing phaser including a housing, a rotor coaxially located within the housing, a phase control valve, a switching valve, and a passage connecting the first advance and retard chambers. The housing and the rotor define at least two chambers, a first chamber separated by a first vane into the first advance and retard chambers, and a second chamber separated by a second vane into the second advance and retard chambers. The switching valve has a first position in which fluid may flow freely between the passage connecting the first advance and retard chambers and fluid flow from the phase control valve to the first advance and first retard chambers is blocked. In the second position, the passage connecting the first advance and retard chambers is blocked and fluid may flow freely between the phase control valve and the first advance and first retard chambers.
Abstract:
A valve timing controller includes a first rotating element and a second rotating element. The controller further includes a link mechanism part including arm members for coupling the first and second rotating elements. The controller also includes a gear part including a first gear and a second gear to convert outside rotating torque to control torque for motion of the arm members due to coupling of and relative motion of the first and second gears. Additionally, the controller includes a separation member disposed between the gear part and the link mechanism part for separating a thrust gap of the gear part and a thrust gap of the link mechanism part.
Abstract:
An engine decompression system that can secure a projecting height of a decompression cam from a base face of a valve operating cam to be relatively large in an engine starting rotational region, and maintain a state in which the projection height is decreased in a complete combustion rotational region of the engine. The decompression system includes a decompression cam shaft provided on a valve operating cam shaft or a rotating member integrally coupled thereto, the decompression cam shaft being capable of rotating between an operating position in which a decompression cam projects above a base face of a valve operating cam to slightly open engine valves during a compression stroke and a release position in which the decompression cam is withdrawn to allow the engine valves to close. A centrifugal mechanism connected to the decompression cam shaft maintains the decompression cam shaft at an operating position in a starting rotational region, and rotates the decompression cam shaft to the release position in a normal running region. The centrifugal mechanism is arranged so that, in a complete combustion rotational region between the starting rotational region and the normal running region, the decompression cam shaft is maintained at a middle position at which the projection height of the decompression cam is less than the projection height at the operating position.
Abstract:
A parallel guide portion as an integral structure of a sprocket and a vane, as well as a slant guide portion, are arranged alternately on the same circumference, with circumferential gaps being formed between said guide portion and the parallel guide portion, said guide portion having a shape such that the circumferential gaps become smaller in one axial direction of a cam shaft. Wedge members are disposed in the circumferential gaps respectively and are moved in one axial direction to fill up the circumferential gaps, thereby fixing the phase between the sprocket and the vane into a locked state. The wedge angle of each wedge member is set sufficiently small and, by utilizing varying torques acting on the cam shaft, said members are each moved and locked in one axial direction with a spring. Said members are actuated in an opposite axial direction with oil pressure to release the locked state, thereby permitting a phase angle control. By utilizing a varying torque acting on the cam shaft, the phase of the cam shaft is returned for itself to an intermediate position and is locked without looseness.
Abstract:
Rotary valve system for controlling communication with a port in an internal combustion engine which, in one disclosed embodiment, has a crankshaft, compression and expansion pistons connected to the crankshaft for reciprocating movement within compression and expansion chambers, a combustion chamber in which air from the compression chamber is combined with fuel and burned to produce an increased gas volume. The valve system has an outer valve member which is rotatively mounted in a bore and has an opening which moves into and out of communication with the port as the outer valve member rotates, an inner valve member rotatably mounted within the outer valve member with an opening at least partly overlapping the opening in the outer valve member, a flange extending along one edge of the opening in the inner valve member and through the opening in the outer valve member for sealing engagement with the wall of the bore, and means for effecting rotation of the valve members to change the degree of overlap between the openings and thereby control the timing and duration of communication between the openings and the port.
Abstract:
A synchronous drive apparatus and method, wherein the apparatus comprises a plurality of rotors comprising at least a first and a second rotor. The first rotor has a plurality of teeth for engaging the engaging sections of an elongate drive structure, and the second rotor has a plurality of teeth for engaging the engaging section of the elongate drive structure. A rotary load assembly is coupled to the second rotor. The elongate drive structure engages about the first and second rotors. The first rotor is arranged to drive the elongate drive structure and the second rotor is arranged to be driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly is such as to present a periodic fluctuating load torque when driven in rotation, in which the angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or substantially cancels the fluctuating load torque of the rotary load assembly.
Abstract:
An internal combustion engine comprising a variable valve lift system whereby the engine can operate selectively in either of at least two valve lift modes, and a variable valve timing system, as well as a method for controlling valve lift shifting in such an engine are disclosed. The method comprises controlling the variable valve timing system so as to reduce the difference between two of the valve lift modes regarding the output torque of the engine.
Abstract:
In a chain drive for an internal combustion engine, said chain drive comprising a driving wheel (2), a driven wheel (3), an endlessly circulating chain (1) that connects the driving wheel (2) and the driven wheel (3), a chain tensioner (9) acting on the slack strand (7) of the chain (1), and an additional tensioning device (12) that is loaded by a spring (13) and acts on the tight strand (6) of the chain (1) while being arranged for pivoting, a further driven wheel (4) is installed in the tight strand (6) of the chain drive and is used as a driving wheel for a rotatably mounted compensating shaft for offsetting free forces and moments that occur during operation of the internal combustion engine.
Abstract:
A system is disclosed which has a first camshaft coupled to a first gearwheel via a camshaft adjuster, the camshaft adjuster allowing the camshaft to be rotated with respect to the gearwheel, and a second camshaft fixedly coupled to a second gearwheel. The first and second gearwheels are coupled to a crankshaft via a belt or a chain. The camshaft adjuster is fixed to the first camshaft by a first fastener; the second gearwheel is fixed to the second camshaft by a second fastener. The fasteners are arranged at substantially the same depth, as assembled. The fasteners may be screws, adhesives, or welds. The second gearwheel includes: a gearwheel body having teeth, a disk-shaped body, and a spacer between the gearwheel basic body and the disk-shaped body, by which the axial length of the spacer causes the depth of the first and second fasteners to be substantially equivalent.
Abstract:
A valve timing system for an internal combustion engine includes a phase alteration mechanism interposed between a driving rotator and a driven rotator and having a direction turning point at which the phase alteration direction is reversed when a movable portion of the mechanism travels from a beginning to a termination, and an operation control device for displacing the movable portion when undergoing an energization control, the movable portion being displaced toward the beginning when the energization control fails to be carried out. The rotation phase is set at a middle position between a maximum retard position and a maximum advance position when the movable portion is located at the beginning.