Abstract:
Fluid storage and dispensing systems, and processes for supplying fluids for use thereof. Various arrangements of fluid storage and dispensing systems are described, involving permutations of the physical sorbent-containing fluid storage and dispensing vessels and internal regulator-equipped fluid storage and dispensing vessels. The systems and processes are applicable to a wide variety of end-use applications, including storage and dispensing of hazardous fluids with enhanced safety. In a specific end-use application, reagent gas is dispensed to a semiconductor manufacturing facility from a large-scale, fixedly positioned fluid storage and dispensing vessel containing physical sorbent holding gas at subatmospheric pressure, with such vessel being refillable from a safe gas source of refill gas, as disclosed herein.
Abstract:
A system for delivering vapor phase fluid at an elevated pressure from a transport vessel containing liquefied or two-phase fluid is provided. The system includes: (a) a transport vessel positioned in a substantially horizontal position; (b) one or more energy delivery elements disposed on the lower portion of the transport vessel wherein the energy delivery devices include a heating means and a first insulation means, wherein the energy delivery devices are configured to the contour of the transport vessel; (c) one or more substantially rigid support devices disposed on the outer periphery of the energy delivery devices, wherein the support devices hold the energy delivery devices in thermal contact with a lower portion of the transport vessel; and (d) one or more attaching devices secure the rigid support devices onto the transport vessel and hold the energy delivery devices between the substantially rigid support device and a wall of the transport vessel.
Abstract:
A method of making a cylindrical pressure vessel (11) with a large diameter port in its sidewall includes the step of providing a mandrel (23) of desired diameter and filament winding upon the same. After winding one overall innermost layer, an annular reinforcement belt (16) is helically wound atop a defined region using a band (60) of resin impregnated parallel strands (39) under tension. The annular belt (16) is then itself helically overwound with the resin impregnated parallel strands of filamentary material under tension to provide two complete outer layers. After curing and removal from the mandrel (23) at least one aperture (71) is cut in the sidewall within the reinforcement belt (16) and a side port fitting (75) is installed in the aperture (71).
Abstract:
A method for storing a gas. In some embodiments, the method includes positioning a gas storage system under water, the gas storage system having a gas inlet and injecting gas through the gas inlet into the gas storage system, wherein the gas is compressed. The method may further include venting the compressed gas through the at least one gas port to a storage facility.
Abstract:
A method and system are provided for extracting propane vapors from a propane storage tank, and condensing the extracted vapors to form a useable liquid propane product.
Abstract:
A compressed gas storage tank that has particular application for storing hydrogen for a fuel cell system. The compressed gas tank includes a cylindrical adapter and valve through which the hydrogen is removed from the tank. A low cost generator is positioned in the tank and has a rotating element positioned in a channel extending through the adapter. As hydrogen is removed from the tank, the mass flow of the hydrogen causes the rotating element to rotate which causes the generator to generate electricity. One or more resistive heating element are positioned in the adapter, preferably proximate to tank seals, that receive an electrical current from the generator that heats the resistive heating element and the adapter to increase the temperature of the adapter and the hydrogen being removed from the tank.
Abstract:
A gas container and method of maintaining gas in a container and assembling a gas container are provided. The gas container includes at least a first section and a second section with the first and second sections being substantially hollow and movable relative to each other and a liquid seal for sealing gas within the container. The liquid seal is disposed between the first section and the second section, wherein a first anti-corrosion coating is provided so as to float on the surface of the liquid in the liquid seals, such that in use, the first anti-corrosion coating is caused to be applied to at least a portion of the second section during motion of the second section relative to the first section.
Abstract:
A deep ocean gas storage system for storing compressed gas, the system comprising an inflexible thin walled storage vessel anchored to the sea floor having an axis located in water substantially perpendicular to and on a sea floor below sea level, a gas intake for admitting and discharging compressed natural gas to and from the vessel; a water port for admitting and discharging water to the vessel using hydrostatic pressure to discharge compressed gas from the vessel at a substantially constant discharge pressure as the volume of the gas in the storage vessel decreases when water content of the vessel increases; a conduit fluidly connected with the water port oriented substantially parallel to the axis having a discharge opening above the level of sea water in the vessel; and a valve disposed at the gas intake to the vessel for controlling compressed gas admission and discharge.
Abstract:
A method for producing a container from sheets of aluminum or an aluminum alloy, wherein the surfaces of the aluminum sheets are at least partly visible on the finished container includes partly prefabricating the container by working and/or joining the aluminum sheets, and subsequently subjecting the entire, at least prefabricated container to surface processing by mechanical blasting.
Abstract:
Methods for accurately and conveniently calculating the temperature of gaseous hydrogen during vehicle fueling are disclosed. The metered amount of hydrogen added to the on-board storage tank, the ambient conditions, The pressure measured at the dispenser, and a correlation to account for heat transfer are the inputs to the methods of the present invention. These inputs eliminate the need for obtaining temperature and pressure information from the vehicle which is out of the control of the dispenser and/or energy provider. In addition, the use of the equation of the present invention does not require the fill rate to be limited and the corresponding fill time to be extended.