Abstract:
A light sensor is provided that includes an exposed light transducer for accumulating charge in proportion to light incident thereon over an integration period; and a light-to-pulse circuit in communication with the exposed light transducer, the light-to-pulse circuit operative to output a pulse having a pulse width based on the charge accumulated by the exposed light transducer. The light-to-pulse circuit may include a one shot logic circuit that contributes to generation of the pulse. The light sensor may include an input/output pad, a capacitor provided at the input/output pad for blocking static electricity, an input low pass filter provided at the input/output pad for blocking electromagnetic interference, and/or a bandgap voltage reference circuit connected to a power source having a supply voltage level in a range of about 3.3V to about 5.0V, and for generating a set of stable reference voltages throughout the supply voltage level range.
Abstract:
A light sensor is provided that includes an exposed light transducer for accumulating charge in proportion to light incident thereon over an integration period; and a light-to-pulse circuit in communication with the exposed light transducer, the light-to-pulse circuit operative to output a pulse having a pulse width based on the charge accumulated by the exposed light transducer. The light-to-pulse circuit may include a one shot logic circuit that contributes to generation of the pulse. The light sensor may include an input/output pad, a capacitor provided at the input/output pad for blocking static electricity, an input low pass filter provided at the input/output pad for blocking electromagnetic interference, and/or a bandgap voltage reference circuit connected to a power source having a supply voltage level in a range of about 3.3V to about 5.0V, and for generating a set of stable reference voltages throughout the supply voltage level range.
Abstract:
The present invention includes a laser diode, a laser controller configured to adjust a wavelength of illumination from the laser diode, a beam sampler configured to receive illumination from the laser diode and configured to direct a delivery portion of illumination to a phase-shifting interferometer, the beam sampler configured to direct a reference portion of illumination along a reference path, a detector configured to receive the reference portion of illumination, an amplitude controller configured to receive information associated with optical power of the reference portion of illumination from the detector and further configured to compare optical power of the reference portion of illumination with a selected optical power, and an optical amplitude modulator configured to adjust optical power of illumination received from a first portion of the illumination path, the optical amplitude modulator configured to transmit illumination having adjusted optical power along a second portion of the illumination path.
Abstract:
According to one embodiment, a resonator control apparatus includes: a first light source that outputs resonance light λ0; a second light source that outputs first control light λ1; a third light source that outputs second control light λ2 of a visible wavelength region or a near-infrared wavelength region; a pair of high reflective mirrors whose resonator length is set to (½)×−(wavelength of the resonance light λ0×integer); a photodetector that monitors transmitted light from the mirror pair; an integrator that captures and integrates two signals detected by the photodetector; a resonator length control unit that controls the resonator length of the mirror pair; and a driver that applies, to the resonator length control unit, a voltage that is calculated by capturing an output signal from the integrator in such a way as to maximize transmittance detected by the photodetector.
Abstract:
This disclosure provides systems, methods and apparatus for electromechanical systems variable capacitance devices. In one aspect, an electromechanical systems variable capacitance device includes a substrate with a bottom bias electrode on the substrate. A first radio frequency electrode above the bottom bias electrode defines a first air gap. A non-planarized first dielectric layer is between the bottom bias electrode and the first radio frequency electrode. A metal layer above the first radio frequency electrode defines a second air gap. The metal layer includes a top bias electrode and a second radio frequency electrode.
Abstract:
A system and method for compensating for non-uniform illumination from a light guide for a display in an electronics device is provided. The system comprises: a memory device storing a data representing a first compensation pattern for generation on the display to block light from a first portion of the light guide relative to light from a second portion of the light guide; a first module to incorporate the stored representation into an image to be displayed on the display; and a second module to generate the image with the stored representation for display on the display. In the system, when the first module generates the first compensation pattern on the display, the first compensation pattern aligns with the first and second portions to reduce an intensity of light from a light source passing through the first compensation pattern from the first portion relative to an intensity of light passing through the first compensation pattern from the second portion from the light source.
Abstract:
Disclosed is a digital type anti-glare device capable of conveniently performing input, operation and adjustment, and a method of controlling the same. The digital type anti-glare device includes a touch sensor input unit recognizing a shade degree and a grind mode level by direct selective operation or adjustment of a user as a digital contact signal and inputting the shade degree and the grind model level to the control unit, and an encoder switch input unit recognizing a sensitivity level and an opening delay level by the selective operation or adjustment of the user and inputting the sensitivity level and the opening delay level to the control unit. Accordingly, it is possible to prevent operation failure due to switch contact, dust or humidity or the like by a touch sensor and encoder input and to facilitate input, operation and adjustment even in a state in which an operator wears gloves.
Abstract:
A method for providing a hot spot filter for a light guide is provided by taking an image of the light output pattern of an illuminated light guide. The hot spot filter may be a film, a layer, or an additional liquid crystal display dedicated to attenuating bright spots from the light guide. The hot spot filter may be incorporated into the image display by adjusting the grey scale of individual pixels to provide sufficient compensation.
Abstract:
A vehicle rearview mirror system includes a transflective reflective element, an ambient light sensor that senses ambient light and a glare light sensor that senses glare light. A control circuit establishes a reflectance level of the reflective element, and the control circuit is responsive to light detection by at least one of the ambient light sensor and the glare light sensor. A display element is disposed behind the reflective element and operable to display information through the reflective element and viewable through the mirror reflector of the reflective element by a driver of the vehicle when the display element displays information, and substantially non-viewable by the driver of the vehicle when the display element does not display information. A display intensity control adjusts display intensity responsive to a light detection by at least one of the glare light sensor and the ambient light sensor.
Abstract:
There are provided systems and methods for automatic adjustment of sensitivity threshold settings in an auto-darkening lens. For example, a user may initiate an automatic sensitivity setting process by activating a user interface (e.g., a button, a switch, a slider, etc.). The automatic sensitivity setting process may proceed to gradually increase the sensitivity threshold voltage until it exceeds an optical voltage based on the ambient light. The process may then be terminated. In some embodiments, a hysteresis may be added to the sensitivity threshold voltage to prevent lens flicker. The automatic sensitivity setting process may be implemented in a digital or analog system. These automatic sensitivity setting processes and systems may save time and provide for more precise sensitivity adjustment.