Abstract:
The present invention relates to a method and an apparatus for a fast thermo-optical characterisation of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).
Abstract:
To enable determination of if there is an influence of foreign-body reactions on the result of quantitative determination conducted with a scattered light measurement method. Proposed is an automatic analysis device including a light source configured to irradiate a reaction solution with light, a plurality of light receivers configured to receive scattered light generated from the reaction solution at different light-receiving angles, a first data processing unit configured to process reaction process data measured by one of the light receivers to quantitatively determine a concentration of a substance in the reaction solution, and a second data processing unit configured to determine if the quantitative determination of the concentration of the substance has been performed normally on the basis of a ratio of a plurality of computed values, the plurality of computed values having been calculated from a plurality of pieces of reaction process data measured by the respective light receivers.
Abstract:
A system for detecting double-feed flat item conveyed in a mail processing machine, including a detection for directing a beam of radiant energy toward the moving flat items, scanning them with the beam and receiving at least a portion of the beam of radiation reflected from them. The detector includes a triangulation sensor for providing an output proportional to the position at which the reflected portion of the beam is received, and means for determining from the output, the distance (d) between the radiation source and the point of reflection of the beam on the moving flat items, and providing a signal (S) representative of said distance; and a controller configured to receive the signal (S) and generate an output signal (V) indicative of a flat item profile and a double-feed condition when it detects a significant break point or slope change of the signal from a first direction to a second direction.
Abstract:
A method measures the flatness of a metal product and an associated device. The method applies to a metal product, in the form of either a strip or a plate from a metallurgical processing line. The product to be measured being, by default, free of external traction. The method contains the following steps: a) illuminating a portion of a face of the product under uniform intensity; b) capturing an image of a light line of the illuminated portion; c) relatively moving the illuminated portion and the light line in a defined direction in relation to the product; d) repeating steps a), b), c); and e) collecting the images of lines in a two-dimensional distribution of intensities and selecting a strand direction of the product in which, if at least one wave of intensities is detected, a local amplitude variation of the wave delivers a local strand flatness defect value.
Abstract:
The present invention relates to a method and an apparatus for a fast thermo-optical characterization of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).
Abstract:
An apparatus for measuring an optical component (160, 170, 190) of the apparatus, the apparatus comprising a radiation source (130) configured to form a measuring beam in a measuring channel (140), wherein the measured optical component configured to be in a first position outside the measuring channel and in a second position in the measuring channel; a first detector (110) configured to receive beams in the measuring channel; a second detector (150) configured to receive beams in the measuring channel; at least one processor; and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to select at least one of the first detector and the second detector to receive beams in the measuring channel, the measuring channel (140) being integrated to a photometer or a fluorescence channel of the apparatus; receive a first beam, using the selected detector, in the measuring channel, wherein the measured optical component is in the first position; receive a second beam, using the selected detector, in the measuring channel, wherein the measured optical component is in the second position; and determine the characteristics of the optical component based on the first beam and the second beam.
Abstract:
A method and system for optically inspecting parts are provided wherein the system includes a part transfer subsystem including a transfer mechanism adapted to receive and support a part at a loading station and to transfer the supported part by a split belt conveyor so that the part travels along a first path which extends from the loading station to an inspection station at which the part has a predetermined position and orientation for inspection. An illumination assembly simultaneously illuminates a plurality of exterior side surfaces of the part with a plurality of separate beams of radiation. A telecentric lens and detector assembly forms an optical image of at least a portion of each of the illuminated side surfaces of the part and detects the optical images. A processor processes the detected optical images to obtain a plurality of views of the part which are angularly spaced about the part.
Abstract:
A device for performing biological sample reactions may include a plurality of flow cells configured to be mounted to a common microscope translation stage, wherein each flow cell is configured to receive at least one sample holder containing biological sample. Each flow cell also may be configured to be selectively placed in an open position for positioning the at least one sample holder into the flow cell and a closed position for reacting biological sample contained in the at least one sample holder. The plurality of flow cells may be configured to be selectively placed in the open position and the closed position independently of each other.
Abstract:
A method and system for optically inspecting the ends of a manufactured part at a single inspection station having a measurement axis are provided. The system includes a fixture assembly having a rotatable first fixturing component and a rotatable second fixturing component mating with and removably connected to the first fixturing component to transmit torque from the first fixturing component to the second fixturing component. The second fixturing component has a device for holding the part in a generally horizontal orientation and permit rotation of the horizontally held part between first and second angular positions about the measurement axis. The system also includes an actuator assembly, an illumination device, a lens and detector assembly and at least one processor to process electrical signals generated by the lens and detector assembly to determine at least one geometric dimension or any visual defects at the ends of the part.
Abstract:
A lubricant deterioration sensor mounted in a machine to detect deterioration of a lubricant of the machine, the sensor comprising a white LED for emanating white light, an RGB sensor that detects colors of received light, a clearance forming member in which an oil clearance for intrusion of the lubricant is formed, and a support member that supports the white LED, the RGB sensor, and the clearance forming member; and wherein the clearance forming member allows passage of the light emitted from the white LED, and the oil clearance is placed along an optical path from the white LED to the RGB sensor.