Abstract:
The present invention relates to a method for manufacturing a nanoparticle array, a surface plasmon resonance-based sensor, and a method for analyzing using the same. According to one embodiment of the present invention, after a mixed solution of an ionized binder and conductive nanoparticles is prepared, a substrate is dipped into the mixed solution. Thereafter, by applying an electric field to the mixed solution into which the substrate is dipped so as to induce coating of the conductive nanoparticles on the substrate, it is possible to manufacture, by a wet method, a nanoparticle array in which the conductive nanoparticles are quickly coated on the substrate with high density.
Abstract:
The invention relates to cleavable chemistry in general, and in particular, to tunable fluorescence using cleavable linkers present in fluorochrome-quencher conjugates.
Abstract:
In an optical inspection tool, an illumination aperture is opened at each of a plurality of aperture positions of an illumination pupil area one at a time across the illumination pupil area. For each aperture opening position, an incident beam is directed towards the illumination pupil area so as to selectively pass a corresponding ray bundle of the illumination beam at a corresponding set of one or more incident angles towards the sample and an output beam, which is emitted from the sample in response to the corresponding ray bundle of the incident beam impinging on the sample at the corresponding set of one or more incident angles, is detected. A defect detection characteristic for each aperture position is determined based on the output beam detected for each aperture position. An optimum aperture configuration is determined based on the determined defect detection characteristic for each aperture position.
Abstract:
A device (10) and a method for analyzing a sample (16) containing fluorophores use a light source (12) emitting light (λex) onto the sample (16), and onto a fluorescence standard (14). The fluorophores of the sample (16), given an immission of light of a first wavelength (λex1), have a first excitation efficiency and, given an immission of light of a second wavelength (λex2), have a second excitation efficiency. The fluorescence standard (14), given the same immissions of light, has a third excitation efficiency and, a fourth excitation efficiency. An optical element (20) which is arranged between the light source (12) and the sample (16) and/or (12) the fluorescence standard (14) adapts, due to its optical property, a first difference between the first excitation efficiency and the second excitation efficiency and a second difference between the third excitation efficiency and the fourth excitation efficiency to each other.
Abstract:
A plasmonic hydrogen detector and method of constructing a plasmonic hydrogen detector. The plasmonic hydrogen detector comprises: a structure comprising a support and a plurality of nanostructure elements. The plurality of nanostructure elements comprise a plasmonic material and a hydrogen sensitive material. The plurality of nanostructure elements are configured on the support to allow the structure to act as a plasmonic metamaterial. The hydrogen sensitive material is configured to cause a change in permittivity of the plasmonic metamaterial in the presence of hydrogen. Aspects and embodiments described recognise that use of a plasmonic metamaterial as a hydrogen detector can result in a highly sensitive detector. That sensitivity stems from the sensitivity of strong plasmonic coupling between individual nanostructure elements in the metamaterial to external perturbations, for example, as a result of a physical or chemical environmental change.
Abstract:
A method of illuminating an item is disclosed. The method includes applying adhesive to the item, interspersing a taggant in the adhesive, illuminating the item with an excitation signal, sensing luminescence emitted by the taggant in response to illumination by the excitation signal, and determining the authenticity of the item based on the sensed emitted luminescence. The item can include any item benefited by authentication, and can include a postage stamp. A method of customizing an item is disclosed. This can include the steps of preparing a substrate, applying a security feature to the substrate, printing non-customized information on the substrate, receiving image information, and printing the image information on the substrate.
Abstract:
A system and method for in-field near infrared spectroscopy (NIRS) analysis of rubber and resin concentrations a guayule plant is provided. The system includes a wagon or other vehicle with the NIRS device mounted on the wagon. A computer or processor electrically coupled to the NIRS device is also housed within an area or extension of the wagon. During measurement of a guayule plant in the field, a guayule plant covering is placed over the guayule plant and a light shield coupled to the NIRS device is inserted into an opening on the guayule plant covering. The NIRS device is configured to perform a reading of the guayule plant within the plant covering and communicate results of the reading to the computer. A calibration equation is then preferably applied to the guayule plant readings to produce the rubber and resin concentrations of the guayule plant.
Abstract:
Disclosed herein is an optical detector at least including: a first substrate in which a plurality of wells are formed; a second substrate in which a heating section is provided to heat the wells; a third substrate in which a plurality of photoirradiation sections are provided in alignment with the wells; and a fourth substrate in which a plurality of photodetection sections are provided in alignment with the wells.
Abstract:
System and method for fluorescent light excitation and detection from samples to enhance the numerical aperture and/or reduce the cross-talk of the fluorescent light. The system for analyzing samples comprising: a light source that provides a non-coherent excitation light; at least one housing, wherein the housing transports samples and propagates the non-coherent excitation light by total internal reflection; a coupling optical element configured to introduce the non-coherent excitation light into the at least one housing through a wall of the at least one housing; and at least one NA enhancing optical element to collect an emitted fluorescence, wherein the NA enhancing optical element is constructed of a first material and the housing is constructed of a second material, wherein the first material has a greater index of refraction than the second material.
Abstract:
The present invention comprises a surface to maximize the viewing of an impression in a vehicle body. This may comprise a fabric which has at least one dark colored stripe parallel to at least one light colored stripe; a compressible frame across which the said fabric is affixed, where when the frame is uncompressed the fabric is stretched taut across the frame and where the frame is compressed the fabric is slack across the frame; and a handle on the frame where a user can hold the frame and not interfere with the fabric affixed to said frame. When a user is holding the handle of the frame at an angle between 0° and 180°, the user can reflect radiant energy through said fabric onto the vehicle body and create a whorl reflection pattern on the impression to maximize viewing of said impression by the user.