Abstract:
A medical examination device used for the detection of pre-cancerous and cancerous tissue has an illumination source, a visualization unit, a contacting optical probe, a detector and a process unit. One embodiment of the apparatus includes both a non-contacting macroscopic viewing device (the visualization unit) for visualizing an interior surface of the cervix, as well as a fiber optic wand (contacting optical probe) for spectrally analyzing a microscopic view of the tissue.
Abstract:
It is desirable to more stably and efficiently transmit light in a housing of a light source unit. A light source unit 13, which emits a laser beam L to a light guide part 40, includes: a unit housing 13b that includes a connector receiving portion 51b detachably connected to a connector portion 51a; a light source 30 that is installed in the unit housing 13b and outputs the laser beam L; a diffusion part 80 that diffuses the laser beam L output from the light source 30; a condensing lens system 81 that condenses the laser beam L diffused by the diffusion part 80; and an optical fiber 82a that transmits the laser beam L, which is condensed by the condensing lens system 81, to the connector receiving portion 51b. The connector receiving portion 51b optically connects the optical fiber 82a to the light guide part 40.
Abstract:
A device for determining a concentration of at least one gas in a sample gas stream includes an analysis chamber, a detector, and a connecting channel. The analysis chamber is configured to have the sample gas stream and a reaction gas stream be introduced therein. The sample gas stream and the reaction gas stream are mixed to a gas mixture which reacts so as to emit an optical radiation. The detector is configured to measure the optical radiation. The connecting channel is configured to connect the analysis chamber to the detector. The connecting channel is configured as a light conductor extending from the analysis chamber to the detector.
Abstract:
A spectrally encoded imaging device having a light transmission path arrangement which propagates light to illuminate a target object, a light collection path arrangement having a light collection waveguide which propagates a spectrally encoded portion of the light from the target object to a detector which forms an image of the target object accordingly, and a diffractive element which spectrally disperses at least one of the light and the spectrally encoded portion. The light transmission path arrangement and the light collection path arrangement are optically isolated from one another.
Abstract:
A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.
Abstract:
An optical arrangement comprising a multi-mode fiber (16) for carrying single mode laser light (12); a randomizer (18) for randomizing spatial modes supported by the fiber and means for averaging, out the randomized spatial modes to recover the single spatial mode.
Abstract:
A medical examination device used for the detection of pre-cancerous and cancerous tissue has an illumination source, a visualization unit, a contacting optical probe, a detector and a process unit. One embodiment of the apparatus includes both a non-contacting macroscopic viewing device (the visualization unit) for visualizing an interior surface of the cervix, as well as a fiber optic wand (contacting optical probe) for spectrally analyzing a microscopic view of the tissue.
Abstract:
An apparatus and methods for measuring combustion parameters in the measurement zone of a gas turbine engine. The measurement zone is defined as being between an outer casing and an engine component having a reflecting surface inside the outer casing. The apparatus comprises a laser generating a transmitting beam of light of a select wavelength and a multimode transmitting fiber optically coupled to the laser. A transmitting optic is optically coupled to the multimode optical fiber for transmitting the beam into the measurement zone. The reflecting surface is configured to provide a Lambertian reflection. A receiving optic is positioned to receive the Lambertian reflection. Means are provided in operative association with the multimode transmitting fiber for averaging modal noise induced signal level variation of light propagating within the multimode transmitting fiber.
Abstract:
The present invention is directed to solving the problems associated with the detection of surface defects on metal bars as well as the problems associated with applying metal flat inspection systems to metal bars for non-destructive surface defects detection. A specially designed imaging system, which is comprised of a computing unit, line lights and high data rate line scan cameras, is developed for the aforementioned purpose. The target application is the metal bars (1) that have a circumference/cross-section-area ratio equal to or smaller than 4.25 when the cross section area is unity for the given shape, (2) whose cross-sections are round, oval, or in the shape of a polygon, and (3) are manufactured by mechanically cross-section reduction processes. The said metal can be steel, stainless steel, aluminum, copper, bronze, titanium, nickel, and so forth, and/or their alloys. The said metal bars can be at the temperature when they are being manufactured. A removable cassette includes various mirrors. A protection tube isolates the moving metal bar from the line light assembly and image acquisition camera. A contaminant reduction mechanism applies a vacuum to remove airborne contaminants.
Abstract:
The tablets press according to the invention comprises an integral measuring device for the determination of the quantitative content of at least one substance in a tablet, comprising: at least one radiation source, which emits radiation in the near infrared range, for the irradiation of the tablet, a radiation receiving device contained in a measuring head, which receives the radiation reflected by the tablet, a spectrometer for receiving the radiation from the radiation receiving device and for supplying an output signal according to the intensity of the received radiation at a number of different wavelengths and a device for the quantitative determination of the content of at least one substance contained in the tablet and/or for the determination of the ratios of all or some of the contained components based on the output signal, wherein the measuring device is suitable for measuring each individual pressed tablet, and the trigger times of the measurements are correlated with the conveying speed of the tablets press.