Abstract:
Provided is an electro-optic modulating device. The electro-optic modulating device includes an optical waveguide with a vertical structure and sidewalls of the vertical structure are used to configure a junction.
Abstract:
There is provided a planar optical waveguide element in which an optical waveguide core comprises an inner side core having protruding portions that form a rib structure, and an outer side core that is provided on top of the inner side core and that covers circumferential surfaces of the protruding portions, wherein a refractive index of the outer side core is lower than an average refractive index of the inner side core. The structure of the planar optical waveguide element can be applied even when the core is formed from a material having a higher refractive index than that of a silica glass-based material such as silicon (Si) or silicon nitride (SixNy).
Abstract:
Provided is a traveling-wave type semiconductor optical phase modulator capable of high speed and low voltage operation by improving an n-SI-i-n-type layered structure. A first exemplary aspect of the present invention is a waveguide-type semiconductor optical modulator including: a semiconductor substrate (101); a first n-type cladding layer (103) and a second n-type cladding layer (108) formed on the semiconductor substrate (101); an undoped optical waveguide core layer (104) and an electron trapping layer (107) formed between the first n-type cladding layer (103) and the second n-type cladding layer (108); and a hole supplying layer (106) formed between the undoped optical waveguide core layer (104) and the electron trapping layer (107).
Abstract:
A magneto-optical isolator device is provided. The isolator device includes a substrate and a bottom cladding layer that is formed on the substrate. An optical resonator structure is formed on the bottom cladding layer. The resonator structure includes crystalline or amorphous diamagnetic silicon or silicon-germanium so as to provide non-reciprocal optical isolation. A top cladding layer is formed on the resonator structure. One or more magnetic layers positioned on the top cladding layer or between the top cladding or bottom cladding layers and the optical resonator structure.
Abstract:
Provided is an apparatus and method for use thereof. The apparatus, in one embodiment, includes a 1×2 coupler in communication with a waveguide. The 1×2 coupler, in this embodiment, is configured to separate an input finite bandwidth optical signal provided from the optical waveguide into two similar optical signals. Input ends of first and second waveguide arms, in one embodiment, are in communication with the 1×2 coupler and configured to receive ones of the input optical signals. An inherent birefringence of each of the first and second waveguide arms may be substantially similar. Moreover, the first and second waveguide arms have different physical path lengths that differ by an amount (ΔL). Additionally, a 2×2 coupler may be in optical communication with an output end of the first and second waveguide arms and configured to provide an output TE polarization and an output TM polarization.
Abstract:
A CMOS compatible ten-gigabit-per-second region nano-waveguide included photonic communication link apparatus of low energy use per transmitted bit. An embodiment of the link includes an electrically pumped laser, an electro absorption modulator and a photodetector for the 1.5 to 2.0 micrometer infrared spectral region; omission of the separate electro absorption modulator is additionally disclosed. Each of these three nano-scale elements preferably includes active semiconductor crystal material situated in a preferably Silicon resonator within a nano-strip waveguide. The resonator is defined by dispersed resonator mirrors having tapered separation distance one dimensional photonic crystal lattice apertures of oxide holes or slots. Each of the three devices may be a semiconductor heterodiode pumped or controlled by laterally disposed wings enclosing the resonator to form a lateral PIN heterodiode for current injection or high E-field generation depending on bias and composition conditions selected.
Abstract:
Provided is an apparatus and method for use thereof. The apparatus, in one embodiment, includes a 1x2 coupler in communication with a waveguide. The 1x2 coupler, in this embodiment, is configured to separate an input finite bandwidth optical signal provided from the optical waveguide into two similar optical signals. Input ends of first and second waveguide arms, in one embodiment, are in communication with the 1x2 coupler and configured to receive ones of the input optical signals. An inherent birefringence of each of the first and second waveguide arms may be substantially similar. Moreover, the first and second waveguide arms have different physical path lengths that differ by an amount (ΔL). Additionally, a 2x2 coupler may be in optical communication with an output end of the first and second waveguide arms and configured to provide an output TE polarization and an output TM polarization.
Abstract:
A waveguide type optical isolator comprises a substrate, a waveguiding layer provided with waveguides, a magnetic garnet, magnetic field applying means, and a package substrate, wherein a first magnet and a second magnet is provided as the magnetic field applying means, and the first magnet and the second magnet are housed and fixed within a magnet holder.
Abstract:
Provided is a semiconductor optical modulator device in which a resistor for impedance matching is integrated in a device in order to improve performance and to reduce cost during the fabrication of an ultra high speed optical modulator module. A doped layer in an epitaxial layer of the optical modulator device is used as a resistor for impedance matching. According to this method, it is possible to more easily realize an optical device compared with optical device fabrication processes in which additional resistors are used in the outside and the inside of the device for impedance matching.
Abstract:
A monolithically integrated electroabsorption modulated laser having a ridge waveguide structure, has lateral ion implantation. The integrated device has a laser section and a modulator section. The modulator section has ion implanted regions adjacent to the waveguide ridge. The implanted regions penetrate through the top cladding layer to reduce capacitance within the intrinsic active core of the reverse biased modulator and allow a shallow etched ridge waveguide structure to be used for the modulator. The device provides good optical coupling, efficient manufacturing, and good high power performance.