Abstract:
A remote control system for controlling a vehicle with a smart phone. The system includes the smart phone programmed with an application that can be installed in the phone via a computer or downloaded from the Internet. The system also includes the vehicle that has been equipped with a radio antenna adapted for communication with the smart phone, an electric power source, servo controller drive motor and a programmable microcontroller (including sensors) and a servo controller steering motor.
Abstract:
The present invention advantageously provides a motorized roller shade that includes a shade tube, a motor/controller unit and a power supply unit. The motor/controller unit is disposed within the shade tube, and includes a bearing, rotatably coupled to a support shaft, and a DC gear motor. The output shaft of the DC gear motor is coupled to the support shaft such that the output shaft and the support shaft do not rotate when the support shaft is attached to the mounting bracket.
Abstract:
A remote control device includes operation buttons, detectors, a power generator, a controller, and an output unit. The operation buttons are movable between an ordinary position and a lowermost position and are configured to move from the ordinary position to the lowermost position in response to a push operation. The detectors are configured to detect the respective push operation of the operation buttons. The power generator is configured to generate a power in response to the push operation. The controller is driven by the power. The controller is configured to determine the pushed operation button based on a detection result of the detectors. The controller remotely controls a toilet device by transmitting a wireless signal toward the toilet device. The wireless signal corresponds to the determined operation button. The output unit is configured to produce an output when the power generator has generated the power.
Abstract:
A control device, a method of controlling the same, and an integrated control system are provided. The method includes in response to a setting command being input, registering a setting state of at least one device connected to the control device at a time point when the setting command is input as a preferred setting state of the at least one device, and, in response to an execution command being input, transmitting a control command to the at least one device based on the registered preferred setting state.
Abstract:
A system for adjusting machine parameters based on a skill level of an operator comprises a personal area network (PAN)-compatible electronic control module (ECM) located on a machine. The system also includes a PAN-compatible communication device associated with an operator of the machine. The PAN-compatible communication device is configured to receive information indicative of the skill level of the operator. The PAN-compatible communication device is also configured to establish a wireless communication link with the PAN-compatible ECM and transmit the information indicative of the skill level of the operator to the PAN-compatible ECM. The PAN-compatible ECM is configured to adjust an operational aspect of the machine based on the information indicative of the skill level of the operator of the machine.
Abstract:
Disclosed is a trap including a status LED configured to indicate a trap status, a door sensor configured to indicate a door status, and a status button, configured to: 1) wake a micro controller such that the telemetry-enabled trap can be registered with a telemetry system, and 2) cause the status LED to indicate at least the trap status and the door status. Also disclosed is a method for monitoring the trap. The method includes receiving GPS data, monitoring the GPS data for valid positional information, and receiving an event message from a trap tracker module.
Abstract:
The invention advantageously provides a deployable screen system that includes a roller tube, a motor/controller unit and a power supply unit. The motor/controller unit is disposed within the roller tube, and includes a bearing, rotatably coupled to a support shaft, and a DC gear motor. The output shaft of the DC gear motor is coupled to the support shaft such that the output shaft and the support shaft do not rotate when the support shaft is attached to the mounting bracket. The deployable screen system is operable by tugging, manual movement and wireless control. The DC gear motor is underpowered by a plurality of batteries positioned within the roller tube. In this way a novel, useful and nonobvious deployable screen system is presented.
Abstract:
A device or system, including: a control component and a controlled non-lighting component, wherein the control component is operatively coupled to the controlled component to control the operation thereof; wherein the control component includes: (i) a wireless receiver for receiving wireless signals representing occupancy data indicative of real-time occupancies of locations and respective distances to said locations; (ii) a control interface to output at least one control signal or power to the controlled component; and (iii) a controller configured to process said occupancy data to selectively output the control signal or to control the supply of power to the controlled component in order to control the controlled component on the basis of said occupancy data.
Abstract:
A control device which controls an operation of a controlled device, includes: an operation information storage unit to store operation information about an acceptable operation; a control information acquisition unit to acquire control information about the controlled device; and an association table generation unit to generate an association table for storing the operation information stored in the operation information storage unit associated with the control information acquired by the control information acquisition unit.
Abstract:
A communication system includes: a remote controller having an input unit inputting user operations and a communication unit performing bidirectional communication, transmitting a remote control code in accordance with the user operation with respect to the input unit from the communication unit; and a host device having a communication unit performing bidirectional communication and a host function unit executing processing corresponding to the remote control code received in the communication unit, wherein the host device transmits a status response from the communication unit in response to a status inquiry transmitted from the communication unit of the remote controller, the remote controller repeatedly executes a status check communication procedure including the transmission of the status inquiry and waiting for receiving the status response after transmitting the remote control code at given time intervals during which the communication unit is in a dormant state.