Abstract:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode; and comprising first insulating fine particles and second insulating fine particles larger than the first insulating fine particles, a surface of the insulating fine particle layer having a projection formed from the second insulating fine particles, and a second electrode formed on the insulating fine particle layer, wherein when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted from the second electrode via the projection.
Abstract:
The present invention provides an electron emitting element which has good energy efficiency and which is capable of controlling a value of current flowing in an electron acceleration layer and an amount of emitted electrons by adjusting a resistance value of the electron acceleration layer and an amount of generated ballistic electrons. An electron emitting element 1 includes an electron acceleration layer 4 including a fine particle layer containing insulating fine particles. In the electron emitting element 1, Ie=α·R−0.67 where Ie [A/cm2] is electron emission current per unit area during the voltage application and R is element resistance [Ω·cm2] per unit area, the element resistance being obtained by dividing (a) a voltage applied between the electrode substrate 2 and the thin-film electrode 3 during the voltage application by (b) current in element per unit area which current flows between the electrode substrate 2 and the thin-film electrode 3 during the voltage application, and where α is not less than 2.0×10−6, and the electron emission current Ie is not less than 1.0×10−9.
Abstract:
According to an electron emitting element of the present invention, an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode contains (i) insulating fine particles and (ii) at least one of (a) conductive fine particles having an average particle diameter smaller than an average particle diameter of the insulating fine particles and (b) a basic dispersant. The electron acceleration layer has a surface roughness of 0.2 μm or less in centerline average roughness (Ra). The thin-film electrode has a film thickness of 100 nm or less. As such, according to the electron emitting element of the present invention, it is possible to reduce the thickness of the thin-film electrode to an appropriate thickness. Accordingly, it is possible to increase electron emission.
Abstract:
An electron emitting element of the present invention includes an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode, and the electron acceleration layer includes a fine particle layer containing insulating fine particles and a basic dispersant. This makes it possible to provide an electron emitting element which does not cause insulation breakdown in an insulating layer and which can be produced at a low cost.
Abstract:
Provided is a piezoelectric-film-type electron emitter which enables suppression of reduction of electron emission quantity due to repeated use thereof, and which exhibits high durability. The electron emitter includes a substrate; an emitter section formed of a dielectric material; a first electrode formed on the top surface of the emitter section; and a second electrode formed on the bottom surface of the emitter section. The dielectric material forming the emitter section contains a dielectric composition having an electric-field-induced strain (i.e., percent deformation under application of an electric field of 4 kV/mm, as measured in a direction perpendicular to the electric field) of 0.07% or less.
Abstract:
A dielectric device of higher performance is provided. An electron emitter to which the dielectric device of the present invention is applied includes an emitter formed by a dielectric, and an upper electrode and a lower electrode to which a drive voltage is applied for the purpose of electron emission. The emitter includes an upper layer formed from plural dielectric particles, and a lower layer formed from plural dielectric particles, below the upper layer. The upper layer and/or lower layer are formed by aerosol deposition.
Abstract:
A dielectric device of higher performance is provided. An electron emitter, to which the dielectric device is applied is provided with: an emitter including a dielectric; and an upper electrode and a lower electrode to which drive voltage is applied in order to emit electrons. The emitter is formed by the aerosol deposition method or the sol impregnation method, and the surface roughness of the upper surface thereof is controlled in the range from 0.1 to 3 in Ra.
Abstract:
An electron emission device including a lower electrode on a near side to a substrate and an upper electrode on a far side to the substrate and an insulator layer and an electron supply layer stacked between the lower electrode and the upper electrode and emitting an electron from the upper electrode side at the time of applying a voltage between the lower electrode and the upper electrode, which includes an electron emission part provided with an opening formed by an inner wall of a stepped shape in which a thickness of the insulator layer decreases stepwise; and a carbon-containing carbon region which is connected to the upper electrode side and which is brought into contact with the insulator layer and the electron supply layer.
Abstract:
Provided are a dielectric element and an electron emitter exhibiting suppressed deterioration of element characteristics, which deterioration would otherwise occur with repeated use thereof. An electron emitter (i.e., a dielectric element) of the present invention is configured so as to operate through application of a predetermined driving electric field to an emitter layer. The emitter layer is formed of a dielectric layer containing, as a primary component, a PMN-PT-PZ ternary solid solution composition, and having a Curie temperature Tc (° C.) falling within a range of 60≦Tc≦150.
Abstract:
Provided is a dielectric composition which, when applied to an electron emitter, enables suppression of reduction of electron emission quantity with passage of time. The dielectric composition contains, as a primary component, a PMN-PZ-PT ternary solid solution composition represented by the following formula PbxBip(Mgy/3Nb2/3)aTib-zMzZrcO3 [wherein x, p, and y satisfy the following relations: 0.85≦x≦1.05, 0.02≦p≦0.1, and 0.8≦y≦1.0; a, b, and c are decimal numbers falling within a region formed by connecting the following five points (0.550, 0.425, 0.025), (0.550, 0.150, 0.300), (0.100, 0.150, 0.750), (0.100, 0.525, 0.375), and (0.375, 0.425, 0.200); z satisfies the following relation: 0.02≦z≦0.10; and M is at least one element selected from among Nb, Ta, Mo, and W], and contains Ni in an amount of 0.05 to 2.0 wt. % as reduced to NiO.
Abstract translation:提供一种当应用于电子发射体时能够抑制电子发射量随时间的减少的电介质组合物。 电介质组合物含有作为主要成分的由下式表示的PMN-PZ-PT三元固溶体组合物Pb(Mg y / y) 3 Nb 2/3 3)a z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 其中x,p和y满足以下关系:0.85 <= x <= 1.05,0.02 <= p <= 0.1,0.8 <= y <= 1.0; a,b,c是分别连接以下五个点(0.550,0.425,0.025),(0.550,0.150,0.300),(0.100,0.150,0.7050),(0.100,0.525,0.375),(0.100,0.525,0.375), )和(0.375,0.425,0.200); z满足以下关系:0.02 <= z <= 0.10; 并且M是选自Nb,Ta,Mo和W中的至少一种元素,并且含有0.05-2.0重量%的Ni。 %减少到NiO。