Abstract:
Methods and compositions relating to nucleic acids targeting certain miRNA molecules are disclosed. The nucleic acids are useful, for example, in methods of increasing the expression and/or secretion of EPO and treating various disease states including anemia, hemophilia, and/or sickle cell disease.
Abstract:
An X-ray anode includes a coating and a support body. In addition to a strength-imparting region, the support body has a region formed of a diamond-metal composite material. The diamond-metal composite material is formed of 40 to 90% by volume diamond particles, 10 to 60% by volume binding phase(s) formed of a metal or an alloy of the metals of the group consisting of Cu, Ag, Al and at least one carbide of the elements of the group consisting of Tr, Zr, Hf, V, Nb, Ta, Cr, Mo, W, B, and Si. The highly heat-conductive region can be form-lockingly connected at the back to a heat-dissipating region, for example formed of Cu or a Cu alloy. The X-ray anode has improved heat dissipation and lower composite stress.
Abstract:
A target for generating x-rays includes a target substrate comprising at least one layer of a target material, a track comprising at least one layer of a track material, the track configured to generate x-rays from high-energy electrons impinging thereon, and a braze joint attaching the target substrate to the track.
Abstract:
An anode for an X-ray tube includes at least one thermally conductive anode segment in contact with a rigid support member and cooling means arranged to cool the anode. The anode may further include a plurality of anode segments aligned end to end, each in contact with the support member.
Abstract:
In various embodiments, large-area sputtering targets are formed by providing a plurality of sputtering targets each comprising a backing plate and a refractory metal layer disposed thereon, and spray depositing a refractory metal powder on an interface between the sputtering targets, the refractory metal powder consisting essentially of the same metal as each refractory metal layer, thereby joining the refractory metal layers of the sputtering targets.
Abstract:
An X-ray anode includes a coating and a support body. In addition to a strength-imparting region, the support body has a region formed of a diamond-metal composite material. The diamond-metal composite material is formed of 40 to 90% by volume diamond particles, 10 to 60% by volume binding phase(s) formed of a metal or an alloy of the metals of the group consisting of Cu, Ag, Al and at least one carbide of the elements of the group consisting of Tr, Zr, Hf, V, Nb, Ta, Cr, Mo, W, B, and Si. The highly heat-conductive region can be form-lockingly connected at the back to a heat-dissipating region, for example formed of Cu or a Cu alloy. The X-ray anode has improved heat dissipation and lower composite stress.
Abstract:
An x-ray anode has an emission layer and a carrier with carrier material to support the emission layer. The carrier material is a metallized carbon fiber material with a portion in which the fibers are specifically directed. A high heat dissipation from the emission layer and a coefficient of heat expansion of the carrier that is advantageous for bonding with the emission layer are achieved.
Abstract:
A device for generating an x-ray point source includes a target, and an electron source for producing electrons which intersect with the target to generate an x-ray point source having a size which is confined by a dimension of the target.
Abstract:
Disclosed is a process for the reprocessing or production of a sputter target or an X-ray anode wherein a gas flow forms a gas/powder mixture with a powder of a material chosen from the group consisting of niobium, tantalum, tungsten, molybdenum, titanium, zirconium, mixtures of two or more thereof and alloys thereof with at least two thereof or with other metals, the powder has a particle size of 0.5 to 150 μm, wherein a supersonic speed is imparted to the gas flow and the jet of supersonic speed is directed on to the surface of the object to be reprocessed or produced.
Abstract:
An x-ray tube and method of operating include a vacuum chamber vessel and a source of an electron beam inside the vacuum chamber vessel. A target disposed inside the vacuum chamber vessel includes a substrate and one or more deposits attached to the substrate. Each different deposit includes an atomic element having a different atomic number. The x-ray tube also includes a means for directing the electron beam to a selectable deposit of multiple deposits. The substrate material can be selected with better vacuum sustaining strength, x-ray transparency, melting point, and thermal conductivity than a deposit. The substrate may be cooled by an integrated cooling system. The x-ray tube allows a selectable x-ray frequency to be produced with enhanced economy of power, reduced moving parts, and reduced size. For improved bone mass applications, one of the deposits has a k-fluorescence energy less than about 53 thousand electron volts.