Abstract:
The invention provides a flat band winding for an inductor core comprising at least one insulated conductive flat band having a first linear region, a second linear region, and a third linear region, wherein the third linear region is substantially orthogonally connected to said first linear region and to said second linear region such that said first linear region and said second linear region are displaced by a distance and run in parallel or anti-parallel, and wherein said first linear region and said second linear region are wound in opposite directions around the inductor core and around said third region.
Abstract:
The invention provides a multi gap inductor core, a multi gap inductor, transformer, and a corresponding manufacturing method and winding. The multi gap inductor core (1; 1′; 1″; 1′″), comprises a first plurality of magnetic lamination sheets (2a-2g; 2a′-2m′; 2a″-2n″) made of magnetic core material arranged in a stack and a second plurality of fixing layers (3a-3f; 3a′-3l′; 3a″-3l″) made of a fixing material. Each fixing layer (3a-3f; 3a′-3l′; 3a″-3l″) is arranged between a corresponding pair of adjacent magnetic lamination sheets (2a-2g; 2a′-2m′; 2a″-2n″) and includes mechanical spacer means (4; 4′) which define a gap (G) having a predetermined thickness (d2) between a corresponding pair of adjacent magnetic lamination sheets (2a-2g; 2a′-2m′; 2a″-2n″).
Abstract:
An exposure pattern is written on a substrate, by scanning a light spot along a trajectory over the substrate and switching it on and off according to a desired pattern. Respective spot sizes of the light for illuminating the substrate in respective parts of the trajectory according to a geometry of the pattern. Respective pitch values between successive ones of the parts of the trajectory are selected, in relation to the spot size selected for the respective parts. The light spot is scanned over the substrate along the trajectory, with the selected pitch values between the trajectory parts and a position dependent spot size along the trajectory. In an embodiment a helical trajectory is used.
Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
An ion transfer arrangement for transporting ions between higher and lower pressure regions of the mass spectrometer comprises an ion transfer conduit 60. The conduit 60 has an inlet opening towards a relatively high pressure chamber 40 and an outlet 70 opening towards a relatively low pressure chamber. The conduit 60 also has at least one side wall surrounding an ion transfer channel 115. The side wall includes a plurality of apertures 140 formed in the longitudinal direction of the side wall so as to permit a flow of gas from within the ion transfer channel 115 to a lower pressure region outside of the side wall of the conduit 60.
Abstract:
The invention comprises a tandem accelerator method and apparatus, which is part of an ion beam injection system used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The negative ion beam source includes an injection system vacuum system and a synchrotron vacuum system separated by a foil, where negative ions are converted to positive ions. The foil is sealed to the edges of the vacuum tube providing for a higher partial pressure in the injection system vacuum chamber and a lower pressure in the synchrotron vacuum system. Having the foil physically separating the vacuum chamber into two pressure regions allows for fewer and/or smaller pumps to maintain the lower pressure system in the synchrotron as the inlet hydrogen gas is extracted in a separate contained and isolated space by the injection partial vacuum system.
Abstract:
A method of transporting gas and entrained ions between higher and lower pressure regions of a mass spectrometer comprises providing an ion transfer conduit 60 between the higher and lower pressure regions. The ion transfer conduit 60 includes an electrode assembly 300 which defines an ion transfer channel. The electrode assembly 300 has a first set of ring electrodes 305 of a first width D1, and a second set of ring electrodes of a second width D2 (≧D1) and interleaved with the first ring electrodes 305. A DC voltage of magnitude V1 and a first polarity is supplied to the first ring electrodes 205 and a DC voltage of magnitude V2 which may be less than or equal to the magnitude of V1 but with an opposed polarity is applied to the second ring electrodes 310. The pressure of the ion transfer conduit 60 is controlled so as to maintain viscous flow of gas and ions within the ion transfer channel.
Abstract:
The invention comprises a patient positioning and/or repositioning system, such as a laying, semi-vertical, or seated patient positioning, alignment, and/or control method and apparatus used in conjunction with multi-axis charged particle radiation therapy. Patient positioning constraints optionally include one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are preferably movable and/or under computer control for rapid positioning, repositioning, and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the charged particle beam path to accurately and precisely target the tumor, and/or in system verification and validation.
Abstract:
A first aperture 17 includes an opening 17a of a rectangular shape on a first quadrant and quarter-circular shape on a second quadrant, a third quadrant, and a fourth quadrant. A second aperture 18 includes an opening 18a of a rectangular shape on a third quadrant and quarter-circular shape on a first quadrant, a second quadrant, and a fourth quadrant. An electron beam 54 is shaped into a rectangular form by passing through the first quadrant of the first aperture 17 and the third quadrant of the second aperture 18. Additionally, the electron beam 54 is shaped into a spindle-like cross-sectional form by passing through the third quadrant of the first aperture 17 and the first quadrant of the second aperture 18.
Abstract:
Various embodiments of the present invention are directed to compact, sub-wavelength optical resonators. In one aspect, an optical resonator comprises two approximately parallel reflective structures positioned and configured to form a resonant cavity. The resonator also includes a fishnet structure disposed within the cavity and oriented approximately parallel to the reflective structures. The resonant cavity is configured with a cavity length that can support resonance with electromagnetic radiation having a fundamental wavelength that is more than twice the cavity length.