Abstract:
A method and apparatus for grounding a chamber isolation valve are provided. Generally, the method makes use of an electrically conductive elastomeric member or members to effectively ground a chamber isolation valve and/or isolation valve door while avoiding metal-to-metal contact between moving parts in the processing system. In one embodiment, the elastomeric member is attached to and in electrical communication with the door of the chamber isolation valve. The elastomeric member is brought into contact with a grounded component of the plasma processing system when the door is in the closed position. In another embodiment, the conductive elastomeric member is attached to a bracing member of the isolation valve and is brought into contact with a grounded component of the plasma processing system when the bracing member is deployed to hold the isolation valve door in place during substrate processing. Other configurations are also provided.
Abstract:
An exhaust assembly is described for use in a plasma processing system, whereby secondary plasma is formed in the exhaust assembly between the processing space and chamber exhaust ports in order to reduce plasma leakage to a vacuum pumping system, or improve the uniformity of the processing plasma, or both. The exhaust assembly includes a powered exhaust plate in combination with a ground electrode is utilized to form the secondary plasma surrounding a peripheral edge of a substrate treated in the plasma processing system.
Abstract:
A chemical-reaction inducing means is provided in an exhaust line connecting a processing space for subjecting a substrate or a film to plasma processing to an exhaust means, and at least either an unreacted gas or byproduct exhausted from the processing space are caused to chemically react without allowing plasma in the processing space to reach the chemical-reaction inducing means, thereby improving the processing ability of the chemical-reaction inducing means to process the unreacted gas or byproduct.
Abstract:
The present invention provides a DBD cell (500) including ring shaped electrodes (512 and 514) that are positioned side-by-side on a dielectric tube (516). An AC power supply (518) is provided such that the cell and the power supply form a DBD treatment device (540) for abatement of noxious gases for example FCs that can be discharged from semiconductor fabricating devices. Additionally, one or more sensors (822) and/or one or more gas addition ports (816) can be included in a DBD cell (800) of the present invention. Several DBD cells (1030, 1036 and 1042) of the present invention can be combined to form a DBD reactor (1010) of the present invention. AC power supplies (1012, 1014 and 1016) are utilized to energize the cells (1030, 1036 and 1042), forming a novel noxious gas treatment device (1000) wherein plasmas are created when gas is present inside the reactor. A DBD treatment device (1314) of the present invention can be operably connected to the gas discharge system of a semiconductor fabricating device (1310), forming a novel semiconductor processing system. Furthermore, DBD devices of the present invention (1714) can be utilized to form fluorine species for use in chemical processing methods, techniques and devices including wafer fabricating devices (1718). Additionally, DBD treatment devices of the present invention (1540, 1542 and 1544) can be integrated with vacuum pump stages (1520, 1522, 1524, 1526 and 1528) to form a novel pump integrated DBD treatment apparatus (1500).
Abstract:
A method of cleaning a semiconductor fabrication processing chamber involves recirculation of cleaning gas components. Consequently, input cleaning gas is utilized efficiently, and undesirable emissions are reduced. The method includes flowing a cleaning gas to an inlet of a processing chamber, and exposing surfaces of the processing chamber to the cleaning gas to clean the surfaces, thereby producing a reaction product. The method further includes removing an outlet gas including the reaction product from an outlet of the processing chamber, separating at least a portion of the reaction product from the outlet gas, and recirculating a portion of the outlet gas to the inlet of the processing chamber.
Abstract:
Method of avoiding or eliminating deposits in the exhaust area of a vacuum system in which a gas containing depositable constituents in the exhaust area is at least intermittently pumped out of a vacuum chamber that is connected to a vacuum pump via a gas line. A reactive gas that removes deposits from the gas in the vacuum pump and/or units provided downstream therefrom, and/or reduces or eliminates existing deposits in this area is at least intermittently added to the gas directly upstream from or within the vacuum pump. The proposed method is particularly suitable for anisotropic plasma etching of silicon using alternating etching steps and polymerization steps, the vacuum chamber being supplied with a sulfur-containing etching gas during the etching steps and a polymerizing agent-containing gas during the polymerization steps.
Abstract:
A substrate processing apparatus has a process chamber with a substrate support, a gas supply to introduce a gas into the chamber, and a gas energizer to energize the gas in the processing of a substrate, thereby generating an effluent gas. A catalytic reactor has an effluent gas inlet to receive the effluent gas and an effluent gas outlet to exhaust treated effluent gas. A heater is adapted to heat the effluent gas in the catalytic reactor. The heated catalytic treatment of the effluent gas abates the hazardous gases in the effluent. An additive gas source and a prescrubber may also be used to further treat the effluent.
Abstract:
There is provided a method of dry etching a nickel film formed on a substrate by means of plasma of an etching gas, wherein the etching gas includes at least one of CO and CO2 gases, and the substrate is designed to keep a temperature in the range of −25° C. to 40° C. both inclusive, while the substrate is being etched. For instance, the etching gas is a mixture gas including CO and CO2 gases, a mixture gas including CO, CO2 and H2 gases, or a mixture gas including CO and H2 gases. The above-mentioned method provides higher etching accuracy, higher etching rate, and less etching damage in a substrate.
Abstract:
An active substance treating method is characterized in that an active substance is caused to react with an inactivating substance in an exhaust system for a thin film forming apparatus. A thin film forming apparatus includes a common chamber having a region where plasma CVD is carried out and a region where thermal CVD is carried out, a device provided in the chamber for pressing a substrate onto a holder, a lamp for illuminating light having a component of a wavelength of 1 .mu.m or above to heat the substrate, an introducing port for separately introducing two active substances to a vicinity of the substrate, a vaporizing device in which at least two bubblers are series-connected to vaporize the active substances, and an exhaust system which is divided into two systems each of which has a heater and which has a port for introducing an inactivating substance into an exhaust pump.
Abstract:
An active substance treating method is characterized in that an active substance is caused to react with an inactivating substance in an exhaust system for a thin film forming apparatus. A thin film forming apparatus includes a common chamber having a region where plasma CVD is carried out and a region where thermal CVD is carried out, a device provided in the chamber for pressing a substrate onto a holder, a lamp for illuminating light having a component of a wavelength of 1 .mu.m or above to heat the substrate, an introducing port for separately introducing two active substances to a vicinity of the substrate, a vaporizing device in which at least two bubblers are series-connected to vaporize the active substances, and an exhaust system which is divided into two systems each of which has a heater and which has a port for introducing an inactivating substance into an exhaust pump.