Abstract:
An electric oscillator includes a source of electrical energy coupled to a frequency determining network. The network includes first and second branches connected in parallel wherein the first branch comprises a capacitor and the second branch comprises a variable resistor connected to one end of each of two fixed resistors whose other ends are interconnected by a further capacitor.
Abstract:
A frequency shift oscillator includes a first frequencydetermining circuit whereby the oscillator normally functions at a first frequency. A second circuit having input and output terminals is arranged to be switched between predetermined points in the first circuit, shifting the frequency of the oscillator to a second frequency. The predetermined points in the first circuit and the input-output terminals of the second circuit are all maintained at substantially the same constant potential irrespective of whether or not the second circuit is switched between the predetermined points in the first circuit, avoiding the generation of transients which would otherwise occur upon the switching of the second circuit in and out of the first circuit.
Abstract:
A superconducting input and/or output system employs at least one microwave superconducting resonator. The microwave superconducting resonator(s) may be communicatively coupled to a microwave transmission line. Each microwave superconducting resonator may include a first and a second DC SQUID, in series with one another and with an inductance (e.g., inductor), and a capacitance in parallel with the first and second DC SQUIDs and inductance. Respective inductive interfaces are operable to apply flux bias to control the DC SQUIDs. The second DC SQUID may be coupled to a Quantum Flux Parametron (QFP), for example as a final element in a shift register. A superconducting parallel plate capacitor structure and method of fabricating such are also taught.
Abstract:
An acoustic wave force field generator array that uses a plurality of synchronized oscillating emitters system that effectively blocks noise from passing through an acoustic barrier of wave/bubble pattern forms generated by the rapid oscillation of the integrated magnet and emitter system. The movement of the magnets also produces an EM field that generates a current to at least partially power the driver and speaker systems.
Abstract:
A current controlled operational transconductance amplifier based sinusoidal oscillator circuit that provides oscillation based on the transconductance and parasitic capacitance of the operational transconductance amplifier without externally connected capacitances. The oscillation frequency is adjusted through a variable current source or a variable resistor with a DC voltage source.
Abstract:
A tunable resonant circuit includes first and second capacitors that provide a matched capacitance between first and second electrodes of the first and second capacitors. A deep-well arrangement includes a first well disposed within a second well in a substrate. The first and second capacitors are each disposed on the first well. Two channel electrodes of a first transistor are respectively coupled to the second electrode of the first capacitor and the second electrode of the second capacitor. Two channel electrodes of a second transistor are respectively coupled to the second electrode of the first capacitor and to ground. Two channel electrodes of the third transistor are respectively coupled to the second electrode of the second capacitor and to ground. The gate electrodes of the first, second, and third transistors are responsive to a tuning signal, and an inductor is coupled between the first electrodes of the first and second capacitors.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.