Abstract:
An electrical substrate material is presented comprising a thermosetting matrix of polybutadiene or polyisoprene and a co-curable second resin distinct from the first resin. A peroxide cure initiator and/or crosslinking agent may optionally be added. The presence of a very high surface area particulate filler, preferably fumed silica, is also preferred, in that its presence results in a prepreg which has very little tackiness and can therefore be easily handled by operators. This low tackiness feature allows for the use of conventional automated layup processing, including foil cladding, using one or more known roll laminators. While the prepreg of this invention is tack-free enough to be handled relatively easily by hand, it is also tacky enough to be tacked to itself using a roll laminator (e.g., nip roller) at room temperature. The composition of this invention is particularly well suited for making electrical circuit substrates for microwave and digital circuits, typically in the form of the thermosetting composition being laminated onto one or both opposed surfaces to a metal conductive foil such as copper.
Abstract:
Disclosed in a halogen-free flame-retardant epoxy resin composition, comprising (A) a bisphenol A type epoxy resin, (B) a novolak type epoxy resin, (C) a phenolic resin type curing agent, (D) a curing accelerator, and (E) an inorganic filler. The phenolic resin type curing agent (C) is provided by a nitrogen-containing phenolic resin, preferably, by a co-condensation resin formed by the reaction among a phenolic compound, a guanamine compound, and an aldehyde compound. More desirably, a phenolic resin containing both phosphorus and nitrogen should be used as the curing agent (C). Further, a combination of the co-condensation resin noted above (C-1) and a reactive phosphoric acid ester can be used as a curing agent.
Abstract:
Provided is bonding film for printed circuit boards which is resistant to cracking even when bent with a small radius of curvature, has a sufficient mechanical strength even in its semi-cured state so that the handling may be facilitated, is not undesirably brittle and therefore does not produce undesired debris when cut, and is flexible and flame retardant at the same time. The bonding film may consist of (i) high polymer epoxy resin; (ii) denatured polyamide obtained by reacting epoxy resin and polyamide; (iii) polyfunctional epoxy resin; and (iv) curing agent. Preferably, the denatured polyamide includes a polyalkylene-glycol residue or a polycarbonate-diol residue. Preferably, the high polymer epoxy resin is produced by the polymerization of bifunctional epoxy resin and bifunctional phenol resin, and has a weight averaged molecular weight equal to 50,000 or higher.
Abstract:
An electrical substrate material is presented which comprises a thermosetting matrix which includes a polybutadiene or polyisoprene resin and an unsaturated butadiene or isoprene containing polymer in an amount of 25 to 50 vol. %; a woven glass fabric in an amount of 10 to 40 vol. %; a particulate, preferably ceramic filler in an amount of from 5 to 60 vol. %; a flame retardant and a peroxide cure initiator. A preferred composition has 18% woven glass, 41% particulate filler and 30% thermosetting matrix. The foregoing component ratios and particularly the relatively high range of particulate filler is an important feature of this invention in that this filled composite material leads to a prepreg which has very little tackiness and can therefore be easily handled by operators. This low tackiness feature allows for the use of conventional automated layup processing, including foil cladding, using one or more known roll laminators. While the prepreg of this invention is tack-free enough to be handled relatively easily by hand, it is also tacky enough to be tacked to itself using a roll laminator (e.g., nip roller) at room temperature. In addition, another important feature of this invention is the low amount of glass fabric filler relative to the higher range of particulate filler which leads to improved (lower) CTE in the Z axis or thickness direction, improved electrical performance (e.g., dissipation factor), lower cost and the ability to tailor dielectric constant through appropriate selection of particulate fillers.
Abstract:
Broadly, the present invention comprises a solventless process wherein blends of thermoset polyphenylene oxide and triallylcyanurates can be processed into fiber reinforced laminates, and especially laminates prepared by the Wiggins Teape process. One aspect of the present inventive process comprises blending the polyphenylene powder with a liquid epoxy material, optionally with flame retardants and catalysts, preferably in a high shear mixer at elevated temperature, e.g. in the range of about 100.degree.-130.degree. C. The resultant upstaged or partially-cured blend is sufficiently solidified to be granulated into a powder for Wiggins Teape processing or, optionally, conventional press processing into a fiber reinforced laminates. Resin systems thus-prepared exhibit both improved solderability resistance and improved resistance to organic solvents when compared to thermoplastic systems.
Abstract:
Components, especially of an electronic or electrical type, are cleaned by contact with a flammable liquid organic solvent (21), especially an alcohol. The surface of the solvent is covered with a non-flammable highly fluorinated compound vapor blanket (26), which vapor may also be used to transfer heat to the organic solvent. Both highly fluorinated compound and organic solvent are condensed and re-cycled.
Abstract:
Curable compositions containing a reaction product of at least one bisphenol polyglycidyl ether, at least one epoxidized novolak and at least one brominated bisphenol, in combination with a polyphenylene ether and further components including specific catalysts and hardeners, may be used in the preparation of laminates useful as printed circuit boards and having excellent physical and electrical properties.
Abstract:
A prepreg useful as the core in flame resistant cooper clad, composite, printed circuit boards is made by impregnating a porous substrate with an impregnant containing: either a brominated epoxy or epoxy resin and reactive flame retarding additive containing bromine and phenolic hydroxyl groups (e.g., tetrabromobisphenol A), phenolic novolac oligomer as curing agent, unsaturated epoxidized oil, and optionally, a suitable catalyst; and then heating the impregnated substrate to the "B"-stage.
Abstract:
A surge protection module comprises an upper cover, a lower cover, a printed circuit board assembly (PCBA) and a flame-retardant filler. The lower cover is configured for connecting with the upper cover, and for forming an accommodation space together with the upper cover. At least one through hole is formed at the junction of the lower cover and the upper cover. The PCBA has a plurality of copper traces, and is equipped with at least one surge protection device (SPD). The PCBA further has a plurality of welding structures, and the welding structures are electrically coupled to the SPDs through the copper traces. The PCBA is disposed in the accommodation space, and a part of the PCBA passes through the at least one through hole for exposing the welding structures. The flame-retardant filler is filled in the gap of the accommodation space.
Abstract:
A flame retardant is included in a resin phase, and the flame retardant has a maximum number frequency in a range of 1 μm or less when a particle size distribution is evaluated by dividing a particle size into 1 μm increments. The resin phase includes inorganic particles, and the inorganic particles have a maximum number frequency in a range of 0.5 μm or less when the particle size distribution is evaluated by dividing the particle size into 0.5 μm increments. The flame retardant has an average particle size larger than the average particle size of inorganic particles. The number frequency of the flame retardant and the inorganic particles, respectively, decreases with increasing the particle size.