Abstract:
The fabrication and use of a multifunctional micropipette biological sensor for in-situ detection of temperature changes, ion conductivity, and light is described herein.
Abstract:
An infrared emitter, which utilizes a photonic crystal (PC) structure to produce electromagnetic emissions with a narrow hand of wavelengths, includes a semiconductor material layer, a dielectric material layer overlaying the semiconductor material layer, and a metallic material layer having an inner side overlaying the dielectric material layer. The semiconductor material layer is capable of being coupled to an energy source for introducing energy to the semiconductor material layer. An array of surface features are defined in the device in a periodic manner or quasi-periodic. The emitter device is adapted to emit electromagnetic energy having spectral characteristics determined by parameters of the periodically distributed surface features, the parameters including shape, size, depth, distribution geometry, periodicity, material properties and defects.
Abstract:
A system for receiving an optical communication signal includes a first array of light responsive devices defining a first target area and a second light responsive device defining a second target area. The second target area is smaller than the first target area. A detection device is coupled to the first array of light responsive devices and configured to identify at least one individual light responsive device in the first array of light responsive devices receiving the greatest light input relative to other light responsive devices in the first array of light responsive devices. A positioning device is configured to position the second light responsive device relative to the at least one individual light responsive device, such that the second light responsive device receives the optical communication signal.
Abstract:
A system and method of monitoring with temperature stabilization. The system can include a housing operably connected to a fiber optic cable that provides a light wave thereto, a relay optic for receiving the light wave and being positioned in the housing, a radiation device for processing or producing radiation in the frequency range of 10 GHz to 100 THz from the light wave and being positioned in the housing, a temperature sensor in thermal communication with the housing, and a thermal management device in thermal communication with the housing where the thermal management device adjusts a temperature within the housing based on temperature conditions measured by the temperature sensor. Other embodiments are disclosed.
Abstract:
The present invention provides a nitrogen analyzing apparatus comprising:a nitrogen concentration measuring device configured to measure the concentration of an nitrogen impurities in a mixed gas including argon and oxygen as main components on the basis of emission intensity of a light emitted from the nitrogen impurities by an electric discharge in a discharge tube and an oxygen concentration of a sample gas introduced into the discharge tube, and a diluting oxygen-introducing device configured to add a diluting oxygen in the sample gas sampled from the mixed gas according to the oxygen concentration of the mixed gas.
Abstract:
A system and method for automatically focusing an optical lens controls the light generated by a light-emitting device of an image measuring machine to penetrate a glass sheet, so as to project a picture of the glass sheet onto an object. The system and method further moves an optical lens along a Z-axis of the image measuring machine to capture one or more digital images of the object, and computes a definition value of each captured digital image. Furthermore, the system and method obtains a focus position corresponding to the highest definition value of the captured digital image.
Abstract:
Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.
Abstract:
The invention comprises a real-time stroboscopic acquisition protocol for a measurement of the fluorescence decay and a method and apparatus for real-time calculation of the fluorescence lifetime from that measurement.
Abstract:
A thermally powered source of IR or THz radiation combines low dimension nano-scale oscillators such as nano-wires and nano-tubes with micro-scale photonic crystal resonant defect cavities for efficient generation, coupling and transmission of electromagnetic radiation. The oscillators have M=0, 1 or 2 resonant dimensions on a micro-scale (approximately 1 um to approximately 1 mm) to emit radiation having a local peak at a desired wavelength in the IR or THz regions. The oscillators have at least one non-resonant dimension on a nano-scale (less than approximately 100 nm) to suppress vibration modes in that dimension and channel more thermal energy into the local peak. The photonic crystal defect cavities have N=1, 2 or 3 (N>M) resonant dimensions on the microscale with lengths comparable to the length of the oscillator and the desired wavelength to exhibit a cavity resonant that overlaps the local peak to accept and transmit emitted radiation. The energy from multiple oscillator/defect cavities pairs can be collected and transmitted by an internal waveguide or external mirrors and lens to a specified location where it is output. To improve coupling efficiency, the oscillators and defect cavities preferably exhibit a physical symmetry so that they are substantially “mode matched”. The integration of nano-scale emitters with micro-scale photonic crystal defect cavities creates a new class of metamaterials that more efficient generate radiation.
Abstract:
Multi-energy radiation sources comprising charged particle accelerators driven by power generators providing different RF powers to the accelerator, capable of interlaced operation, are disclosed. Automatic frequency control techniques are provided to match the frequency of RF power provided to the accelerator with the accelerator resonance frequency. In one example where the power generator is a mechanically tunable magnetron, an automatic frequency controller is provided to match the frequency of RF power pulses at one power to the accelerator resonance frequency when those RF power pulses are provided, and the magnetron is operated such that frequency shift in the magnetron at the other power at least partially matches the resonance frequency shift in the accelerator when those RF power pulses are provided. In other examples, when the power generator is a klystron or electrically tunable magnetron, separate automatic frequency controllers are provided for each RF power pulse. Methods and systems are disclosed.