Abstract:
The present invention relates to a cooling device improving the heat transfer between a chip (2) having a semiconducting substrate (3) and a heat sink (7). The gap between a surface (11) of the chip (2) to be cooled and a surface (12) of the heat sink (7), the width of which depends on production tolerances of the elements and soldered connections, is formed as a wedge shape by an angled lower surface (12) of the heat sink, in order to create a wedge-shaped gap. A wedge element (17) having the same wedge angle as the wedge-shaped gap is inserted into said gap exactly far enough that it makes flat contact with both the chip surface (11) to be cooled and the heat sink surface (12). Dimensional deviations are thus compensated for, the use of gap fillers is avoided, and the heat transfer from the heat source to the heat sink is improved.
Abstract:
A method is provided for assembling a computer that includes a carrier board having a board management controller (BMC), a power supply, and a carrier bus. The method includes coupling a module to the carrier board, determining, by the carrier board, a type of the module, and providing power to the module based on the module type such that a voltage component of the power is one of a first voltage and a second voltage that is different than the first voltage.
Abstract:
A wedge lock for use with a single board computer includes a cooling plate positioned with respect to a printed circuit board (PCB), a clamp device configured to secure the single board computer in an operating environment, and a heat conductance plate positioned along a top surface of the cooling plate and a top surface of the clamp device to facilitate conduction cooling of the PCB.
Abstract:
A mounting bracket for securing a mezzanine card in a stacked single board computer includes a main body that includes a first end, an opposite second end, a first side surface, and an opposite second side surface. The main body is sized to be positioned along a side surface of the mezzanine card, wherein the first side surface or the second side surface contacts the side surface of the mezzanine card to facilitate securing the side surface of the mezzanine card with respect to a top PCB. The mounting bracket also includes a first arm formed at the first end of the main body, a second arm formed at the second end of the main body, and at least one top rail coupled to the main body, wherein the top rail is configured to secure a top surface of the mezzanine card with respect to a top PCB.
Abstract:
A method for coupling a battery within an embedded system is described. The method includes creating a hole extending through a printed circuit board (PCB), inserting a portion of the battery into the hole, and electrically coupling the battery to at least one contact.
Abstract:
A system for extracting heat from an electronic device is provided. The system includes heat dissipation means positioned within a printed circuit board to form an in-board heat sink structure and a fluid heat transfer medium disposed in the heat dissipation means. The medium circulates through the heat dissipation means carrying heat away from the electronic device.
Abstract:
A circuit card assembly includes a heat sink, a locking mechanism, a first thermal path, and a second thermal path. The heat sink couples to a circuit board and has an upper surface and a lower surface. The heat sink has a channel extending downward along the upper surface of the heat sink. The locking mechanism is disposed within the channel and includes a plurality of solid wedges movably arranged within the channel. Movement of the wedges is effective to secure the circuit card assembly to a holder. The first thermal path extends from the circuit board through the heat sink to the lower surface of the heat sink and removes thermal energy from the circuit board. The second thermal path is formed from the circuit board, through the heat sink, and then through the wedges to the holder. The second thermal path removes thermal energy from the circuit board that is greater than a leakage amount.