Abstract:
Individual network activities are correlated to interactions with a target web page to facilitate an analysis of the performance of the web page. This correlation is preferably performed using a combination of heuristics and rules developed to filter network activities into those activities that are likely to have been caused by the particular transaction, and those that are unlikely to be associated with that transaction. The activities that are identified as being associated with the transaction are subsequently organized to identify a time-flow of these activities within the transaction, from which performance statistics can be determined and presented to a user. Because the individual activities within the transaction are identified and time-ordered, an analysis of the effects of each activity on the overall performance of the web page can be performed to identify potential problem areas, or to diagnose reported problems.
Abstract:
Individual network activities are correlated to interactions with a target web page to facilitate an analysis of the performance of the web page. This correlation is preferably performed using a combination of heuristics and rules developed to filter network activities into those activities that are likely to have been caused by the particular transaction, and those that are unlikely to be associated with that transaction. The activities that are identified as being associated with the transaction are subsequently organized to identify a time-flow of these activities within the transaction, from which performance statistics can be determined and presented to a user. Because the individual activities within the transaction are identified and time-ordered, an analysis of the effects of each activity on the overall performance of the web page can be performed to identify potential problem areas, or to diagnose reported problems.
Abstract:
In a network that includes intermediary nodes, such as WAN accelerators, that transform messages between nodes, an end-to-end path of the messages is determined. The determined end-to-end path is used in subsequent analysis of message traces, to identify timing and other factors related to the performance of the network relative to the propagation of these messages, including the propagation of the transformed messages. A variety of techniques are presented for determining the path of the messages, depending upon the characteristics of the collected trace data. Upon determining the message path, the traces are synchronized in time and correlations between the connections along the path are determined, including causal relationships. In a preferred embodiment, a user identifies an application process between or among particular nodes of a network, and the system provides a variety of formats for viewing statistics related to the performance of the application on the network.
Abstract:
Individual network activities are correlated to interactions with a target web page to facilitate an analysis of the performance of the web page. This correlation is preferably performed using a combination of heuristics and rules developed to filter network activities into those activities that are likely to have been caused by the particular transaction, and those that are unlikely to be associated with that transaction. The activities that are identified as being associated with the transaction are subsequently organized to identify a time-flow of these activities within the transaction, from which performance statistics can be determined and presented to a user. Because the individual activities within the transaction are identified and time-ordered, an analysis of the effects of each activity on the overall performance of the web page can be performed to identify potential problem areas, or to diagnose reported problems.