Abstract:
A phase change material is applied as a very thin film to a transparent substrate such as glass, which material when switched from the amorphous to the crystalline state and back again can affect the reflectivity/transmittance of the combined substrate-coating system. When used with glass panels in the fabrication of relatively large area window glass, the change in spectrally selective transmittance can be used to modulate the amount of sunlight passing through the glass, and thus reduce the amount of cooling required for an interior space in the summertime, and the amount of heating required of that same interior space in the wintertime, while also optimizing the use of visible daylight. Exemplary of a suitable phase change material for glass coating is GeSb or BiSn. Heating of the phase change material to initiate a change in phase can be provided by the application of electric energy, such as supplied from a pulsed power supply, or radiant energy, such as from a laser.
Abstract:
A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.
Abstract:
Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.
Abstract:
This disclosure provides systems, methods, and apparatus related to blocking macroparticles in deposition processes utilizing plasmas. In one aspect, an apparatus includes a cathode, a substrate holder, a first magnet, a second magnet, and a structure. The cathode is configured to generate a plasma. The substrate holder is configured to hold a substrate. The first magnet is disposed proximate a first side of the cathode. The second magnet is disposed proximate a second side of the substrate holder. A magnetic field exists between the first magnet and the second magnet and a flow of the plasma substantially follows the magnetic field. The structure is disposed between the second side of the cathode and the first side of the substrate holder and is positioned proximate a region where the magnetic field between the first magnet and the second magnet is weak.
Abstract:
A method and apparatus for achieving very high deposition rate magnetron sputtering wherein the surface of a target and especially the race track zone area of the target, in one embodiment may be heated to such a degree that the target material approaches the melting point and sublimation sets in. Controlled heating is achieved primarily through the monitoring of the temperature of the target material and with the aid of a processor subsequently controlling the target temperature by adjustment of the power being inputted to the target. This controlled heating to the sublimation point is particularly effecting in high deposition rate metal coating of parts when used in conjunction with HIPIMS deposition. The apparatus for controlling temperature of the target in one embodiment includes a thermocouple, which is electronically connected to a controller or microcomputer which is programmed to control the power of the pulse to the target, and the duty cycle of the power pulses as the primary means for regulating the temperature of the system.
Abstract:
An apparatus and method for controlling an array of constricted glow discharge chambers are disclosed. More particularly a linear array of constricted glow plasma sources whose polarity and geometry are set so that the contamination and energy of the ions discharged from the sources are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The quality of film along deposition "tracks" opposite the plasma sources can be measured and compared to desired absolute or relative values by optical and/or electrical sensors. Plasma quality can then be adjusted by adjusting the power current values, gas feed pressure/flow, gas mixtures or a combination of some or all of these to improve the match between the measured values and the desired values.
Abstract:
This disclosure provides systems, methods, and apparatus related to deposition techniques using laser ablation. In one aspect, an optical fiber and target of a material to be deposited on a first region of an interior surface of a hollow component are positioned in the hollow component. A first end of the optical fiber is coupled to a laser system. A second end of the optical fiber is proximate the target. The material is deposited on the first region of the interior surface of the hollow component by directing a first laser pulse from the laser system through the optical fiber to impinge on the target.
Abstract:
This disclosure provides systems, methods, and apparatus related to deposition techniques using laser ablation. In one aspect, an optical fiber and target of a material to be deposited on a first region of an interior surface of a hollow component are positioned in the hollow component. A first end of the optical fiber is coupled to a laser system. A second end of the optical fiber is proximate the target. The material is deposited on the first region of the interior surface of the hollow component by directing a first laser pulse from the laser system through the optical fiber to impinge on the target.
Abstract:
This disclosure provides systems, methods, and apparatus related to blocking macroparticles in deposition processes utilizing plasmas. In one aspect, an apparatus includes a cathode, a substrate holder, a first magnet, a second magnet, and a structure. The cathode is configured to generate a plasma. The substrate holder is configured to hold a substrate. The first magnet is disposed proximate a first side of the cathode. The second magnet is disposed proximate a second side of the substrate holder. A magnetic field exists between the first magnet and the second magnet and a flow of the plasma substantially follows the magnetic field. The structure is disposed between the second side of the cathode and the first side of the substrate holder and is positioned proximate a region where the magnetic field between the first magnet and the second magnet is weak.
Abstract:
A dual-cathode arc plasma source is combined with a computer-controlled bias amplifier to synchronize substrate bias with the pulsed production of plasma. Accordingly, bias can be applied in a material-selective way. The principle has been applied to the synthesis metal-doped diamond-like carbon films, where the bias was applied and adjusted when the carbon plasma was condensing, and the substrate was at ground when the metal was incorporated. In doing so, excessive sputtering by too-energetic metal ions can be avoided while the sp3/sp2 ratio can be adjusted. It is shown that the resistivity of the film can be tuned by this species-selective bias. The principle can be extended to multiple-material plasma sources and complex materials.