Abstract:
An optical measurement instrument is an integrated instrument that includes an optical cavity with a light source, a sample cuvette, and an optical sensor. The light source and sensor are on a bench that is on a translational or rotational mechanical platform such that optical beam can be moved to multiple sample containers. Each sample containers holds a distinct microorganism-attracting substance and a portion of a fluid sample containing an unknown microorganism. Each distinct microorganism-attracting substance is configured to bind with a single type of microorganism. The unknown microorganism in the fluid sample binds with the distinct microorganism-attracting substance in a single sample container. The instrument incubates the microorganism in the single sample container and detects the presence of the microorganism in the single sample container to thereby simultaneously identify the unknown microorganism.
Abstract:
A method for detecting and counting particles suspended in fluids, such as bacteria suspended in urine, utilizing dynamic features of the suspended particles and employing light scattering measurements. The disclosed method is suitable for determining the susceptibility of bacteria to antibiotics. A cuvette for detecting bacteria in fluids, which is especially suited for the light scattering measurements, is provided.
Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly includes a unitary body made of a single type of transparent material. The unitary body includes a plurality of optical chambers for receiving the liquid sample, an entry side wall for allowing transmission of an input light beam into the respective liquid sample, and an exit side wall for transmitting a forward scatter signal caused by the particles within the respective liquid sample. Each of the plurality of optical chambers is separated by internal walls of the unitary body.
Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly comprises a main body having internal walls and external walls, and a plurality of cuvettes within the main body at least partially being defined by the internal walls. Each of the plurality of cuvettes has a liquid-input chamber for receiving a respective one of the plurality of liquid samples, a filter, and an optical chamber for receiving a respective filtered liquid sample caused by passing the respective one of the plurality of liquid samples through the filter. Each of the optical chambers includes an entry window for allowing transmission of an input light beam through the filtered liquid sample and an exit window for transmitting a forward scatter signal caused by the particles within the filtered liquid sample.
Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly includes a unitary body made of a single type of transparent material. The unitary body includes a plurality of optical chambers for receiving the liquid sample, an entry side wall for allowing transmission of an input light beam into the respective liquid sample, and an exit side wall for transmitting a forward scatter signal caused by the particles within the respective liquid sample. Each of the plurality of optical chambers is separated by internal walls of the unitary body.
Abstract:
An optical measurement instrument includes an optical cavity with a light source, a plurality of fluid containers, and an optical sensor. Each fluid container holds a test portion of a fluid sample containing an unknown microorganism, and either a distinct microorganism-attracting substance or a distinct growth-inhibiting substance. Each distinct microorganism-attracting or growth-inhibiting substance is configured to react with a single type of microorganism. The instrument incubates the test portions of the fluid sample within the fluid containers. When using microorganism-attracting substances, the presence of microorganism growth within one of the fluid containers simultaneously indicates the presence and identity of the unknown microorganism. When using growth-inhibiting substances, the absence of microorganism growth within one of the fluid containers simultaneously indicates the presence and identity of the unknown microorganism. The incubated test portions of the fluid sample can be compared to an incubated control portion of the fluid sample.
Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly comprises a main body having internal walls and external walls, and a plurality of cuvettes within the main body at least partially being defined by the internal walls. Each of the plurality of cuvettes has a liquid-input chamber for receiving a respective one of the plurality of liquid samples, a filter, and an optical chamber for receiving a respective filtered liquid sample caused by passing the respective one of the plurality of liquid samples through the filter. Each of the optical chambers includes an entry window for allowing transmission of an input light beam through the filtered liquid sample and an exit window for transmitting a forward scatter signal caused by the particles within the filtered liquid sample.
Abstract:
A method for detecting and counting particles suspended in fluids, such as bacteria suspended in urine, utilizing dynamic features of the suspended particles and employing light scattering measurements. The disclosed method is suitable for determining the susceptibility of bacteria to antibiotics. A cuvette for detecting bacteria in fluids, which is especially suited for the light scattering measurements, is provided.
Abstract:
The present invention is an optical measurement system for measuring a liquid sample within a well. The system comprises a light source configured to transmit light though the well, a detector configured to measure optical signals derived from the transmitted light, and a tunable optical element. The tunable optical element is positioned between the light source and the well. The tunable optical element is operable to shape the light to compensate for distortions induced by a surface of the liquid sample. The detector is preferably located below the well for receiving a forward scatter signal indicative of at least one characteristic of the particles within the liquid sample.
Abstract:
An optical measurement instrument is an integrated instrument that includes an optical cavity with a light source, a sample cuvette, and an optical sensor. The light source and sensor are on a bench that is on a translational or rotational mechanical platform such that optical beam can be moved to multiple sample containers. Each sample containers holds a distinct microorganism-attracting substance and a portion of a fluid sample containing an unknown microorganism. Each distinct microorganism-attracting substance is configured to bind with a single type of microorganism. The unknown microorganism in the fluid sample binds with the distinct microorganism-attracting substance in a single sample container. The instrument incubates the microorganism in the single sample container and detects the presence of the microorganism in the single sample container to thereby simultaneously identify the unknown microorganism.