Abstract:
Described herein are devices and methods for making extremely accurate measurements in a medium by continuously measuring the index of refraction of the medium such as water or biological tissue. Also described herein is a device for constantly measuring the index of refraction, and using the index of refraction data to constantly calibrate the optical measurement device. In addition, a primary measurement device (a ladar) that is optimized for data collection in a volume backscattering medium such as water or biological tissue is described, along with data results from the lab.
Abstract:
Described herein are devices and methods for making extremely accurate measurements in a medium by continuously measuring the index of refraction of the medium such as water or biological tissue. Also described herein is a device for constantly measuring the index of refraction, and using the index of refraction data to constantly calibrate the optical measurement device. In addition, a primary measurement device (a ladar) that is optimized for data collection in a volume backscattering medium such as water or biological tissue is described, along with data results from the lab.
Abstract:
A system and method are provided for determining intravenous blood levels of a target compound contained in a blood vessel of a patient. The method includes the operation of detecting concentrations of the target compound within a patient's blood using a sensor device configured to optically test blood at a location within the blood vessel. Another operation is calculating a measured amount of a therapeutic compound to administer into the patient's bloodstream based on the concentrations of the target compound in the blood. The measured amount of therapeutic compound may then be pumped through the catheter into the patient's blood.
Abstract:
An inventive transceiver includes a transmitter for outputting plural beams of electromagnetic energy. In the illustrative embodiment, the transmitter is a vertical cavity surface emitting laser. Plural beams output by the transmitter are directed to the detector by an array of diffractive optical elements. In the preferred embodiment, the optical elements are fabricated by imprinting a pattern on a high temperature film substrate using an ultraviolet epoxy. The use of a vertical cavity surface emitting laser allows for high data rates while the diffractive optical arrangement allows for a compact design.
Abstract:
In an exemplary embodiment of the present invention, an optical interface unit provides an interface between an optoelectronic device and industry standard MTP/MPO connectors. The optical interface unit axially aligns the core of a fiber with the optoelectronic device and interfaces that fiber to the standardized connector. In addition, the optical interface unit further provides a standardized interface for visible contact connection between the individual fiber stubs and the terminated fibers in the standardized connector. The optical interface unit therefore maximizes coupling from the optoelectronic device with the standardized connector.
Abstract:
A method and apparatus for driving lasers. An example laser driving system includes a laser current controller for providing a modulation signal and a bias signal. The modulation signal and bias signal is used by a plurality of high-speed current drivers that accept the modulation signal and the bias signal and produce a plurality of laser drive signals. The example system also has a disable input that disconnects power from a high-speed current driver when the high-speed current driver is not in use. The exemplary system develops the modulation and bias signals by feeding back a signal developed from detection of laser light from one of the lasers driven by the system. The laser may be a data laser or a control laser that is modulated by a signal having a lower frequency than the data lasers. If a control laser is used then the photodetector circuit used for feedback can have a lower frequency response because of the lower frequency of the control laser signal. The photodetector system may also employ a peak detector capacitor discharge circuit where a large capacitance is simulated by having the capacitor discharge through the base of a transistor have a current source in the emitter circuit.
Abstract:
In an exemplary embodiment of the present invention, an optical interface unit provides an interface between an optoelectronic device and industry standard MTP/MPO connectors. The optical interface unit axially aligns the core of a fiber with the optoelectronic device and interfaces that fiber to the standardized connector. In addition, the optical interface unit further provides a standardized interface for visible contact connection between the individual fiber stubs and the terminated fibers in the standardized connector. The optical interface unit therefore maximizes coupling from the optoelectronic device with the standardized connector.
Abstract:
A method and apparatus for driving lasers. An example laser driving system includes a laser current controller for providing a modulation signal and a bias signal. The modulation signal and bias signal is used by a plurality of high-speed current drivers that accept the modulation signal and the bias signal and produce a plurality of laser drive signals. The example system also has a disable input that disconnects power from a high-speed current driver when the high-speed current driver is not in use. The exemplary system develops the modulation and bias signals by feeding back a signal developed from detection of laser light from one of the lasers driven by the system. The laser may be a data laser or a control laser that is modulated by a signal having a lower frequency than the data lasers. If a control laser is used then the photodetector circuit used for feedback can have a lower frequency response because of the lower frequency of the control laser signal. The photodetector system may also employ a peak detector capacitor discharge circuit where a large capacitance is simulated by having the capacitor discharge through the base of a transistor have a current source in the emitter circuit.
Abstract:
A method and apparatus for driving lasers. An example laser driving system includes a laser current controller for providing a modulation signal and a bias signal. The modulation signal and bias signal is used by a plurality of high-speed current drivers that accept the modulation signal and the bias signal and produce a plurality of laser drive signals. The example system also has a disable input that disconnects power from a high-speed current driver when the high-speed current driver is not in use. The exemplary system develops the modulation and bias signals by feeding back a signal developed from detection of laser light from one of the lasers driven by the system. The laser may be a data laser or a control laser that is modulated by a signal having a lower frequency than the data lasers. If a control laser is used then the photodetector circuit used for feedback can have a lower frequency response because of the lower frequency of the control laser signal. The photodetector system may also employ a peak detector capacitor discharge circuit where a large capacitance is simulated by having the capacitor discharge through the base of a transistor have a current source in the emitter circuit.
Abstract:
Described herein are devices and methods for making extremely accurate measurements in a medium by continuously measuring the index of refraction of the medium such as water or biological tissue. Also described herein is a device for constantly measuring the index of refraction, and using the index of refraction data to constantly calibrate the optical measurement device. In addition, a primary measurement device (a ladar) that is optimized for data collection in a volume backscattering medium such as water or biological tissue is described, along with data results from the lab.