Abstract:
The present invention relates to a method for producing colorless, single-crystal diamonds at a rapid growth rate. The method for diamond production includes controlling temperature of a growth surface of the diamond such that all temperature gradients across the growth surface of the diamond are less than about 20° C., and growing single-crystal diamond by microwave plasma chemical vapor deposition on the growth surface of a diamond at a growth temperature in a deposition chamber having an atmosphere, wherein the atmosphere comprises from about 8% to about 20% CH4 per unit of H2 and from about 5 to about 25% O2 per unit of CH4. The method of the invention can produce diamonds larger than 10 carats. Growth rates using the method of the invention can be greater than 50 μm/hour.
Abstract:
A single crystal diamond grown by microwave plasma chemical vapor deposition annealed at pressures in excess of 4.0 GPa and heated to temperature in excess of 1500 degrees C. that has a hardness of greater than 120 GPa. A method for manufacture a hard single crystal diamond includes growing a single crystal diamond and annealing the single crystal diamond at pressures in excess of 4.0 GPa and a temperature in excess of 1500 degrees C. to have a hardness in excess of 120 GPa.
Abstract:
The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 μm/h.
Abstract:
A method to improve the optical clarity of CVD diamond where the CVD diamond is single crystal CVD diamond, by raising the CVD diamond to a set temperature of at least 1500 degrees C. and a pressure of at least 4.0 GPa outside of the diamond stable phase.
Abstract:
An apparatus for producing diamond in a deposition chamber including a heat-sinking holder for holding a diamond and for making thermal contact with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, a noncontact temperature measurement device positioned to measure temperature of the diamond across the growth surface of the diamond and a main process controller for receiving a temperature measurement from the noncontact temperature measurement device and controlling temperature of the growth surface such that all temperature gradients across the growth surface are less than 20° C. The method for producing diamond includes positioning diamond in a holder such that a thermal contact is made with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, measuring temperature of the growth surface of the diamond to generate temperature measurements, controlling temperature of the growth surface based upon the temperature measurements, and growing single-crystal diamond by microwave plasma chemical vapor deposition on the growth surface, wherein a growth rate of the diamond is greater than 1 micrometer per hour.
Abstract:
The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m1/2. The invetnion further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.
Abstract translation:本发明涉及通过微波等离子体化学气相沉积生长的具有至少约30MPa m 1/2的韧性的单晶金刚石。 本发明还涉及一种具有至少约30MPa m 1/2的韧性的单晶金刚石的制造方法。 本发明还涉及在单晶金刚石基底上三维生产单晶CVD金刚石的方法。
Abstract:
A method to improve the optical clarity of CVD diamond where the CVD diamond is single crystal CVD diamond, by raising the CVD diamond to a set temperature of at least 1500 degrees C. and a pressure of at least 4.0 GPa outside of the diamond stable phase.
Abstract:
Disclosed is a manufacturing method of a diamond substrate, comprising a seed crystal preparing step of preparing seed crystal for a single crystal of high temperature/high pressure grown diamond or for a single crystal of vapor deposition grown diamond, a first growing step of growing the seed crystal through microwave plasma chemical vapor deposition method to obtain a first crystal, a second growing step of growing the first crystal through microwave plasma chemical vapor deposition method to obtain a second crystal, and a third growth step of growing the second crystal through a microwave plasma chemical vapor deposition method to obtain a diamond substrate.
Abstract:
An apparatus for producing diamond in a deposition chamber including a heat-sinking holder for holding a diamond and for making thermal contact with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, a noncontact temperature measurement device positioned to measure temperature of the diamond across the growth surface of the diamond and a main process controller for receiving a temperature measurement from the noncontact temperature measurement device and controlling temperature of the growth surface such that all temperature gradients across the growth surface are less than 20° C. The method for producing diamond includes positioning diamond in a holder such that a thermal contact is made with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, measuring temperature of the growth surface of the diamond to generate temperature measurements, controlling temperature of the growth surface based upon the temperature measurements, and growing single-crystal diamond by microwave plasma chemical vapor deposition on the growth surface, wherein a growth rate of the diamond is greater than 1 micrometer per hour.
Abstract:
The present invention is directed to new laser-related uses for single-crystal diamonds produced by chemical vapor deposition. One such use is as a heat sink for a laser; another such use is as a frequency converter. The invention is also directed to a χ(3) nonlinear crystalline material for Raman laser converters comprising single crystal diamond.