Abstract:
A driving circuit for light emitting elements comprises a rectifying unit, a first constant current unit, a first driving transistor, a first voltage control unit and at least one first light emitting element. The rectifying unit has a first terminal and a second terminal, is connected to an external power source that provides alternating current power that is sinusoidal and has alternating negative and positive segments, inverts the negative segments of the AC power to positive segments and forms a pulsating direct current voltage. The first constant current unit has a first end and a second end. The first driving transistor comprises a first gate, a first drain and a first source. The first voltage control unit comprises a first variable resistor and a first bias control element. The first light emitting element has a first end and a second end.
Abstract:
The present invention provides a power supply circuit for driving multiple sets of DC loads. The power supply circuit includes a current providing circuit, a sharing circuit and a current control unit. The current providing circuit receives and regulates a supply voltage into specified output currents to be supplied to the multiple sets of DC loads. The sharing circuit is connected in series with output terminals of the current providing circuit and the multiple sets of DC loads. The sharing circuit includes at least one coupling inductor member for performing equal current sharing among the multiple sets of DC loads. The current control unit is connected to the current providing circuit and the multiple sets of DC loads for detecting magnitudes of the current passing through the multiple sets of DC loads and controlling the output currents from the current providing circuit.
Abstract:
The present invention relates to a driving circuit for driving one or multiple LED chip sets. The driving circuit includes a power converting circuit, one or multiple switching elements, and a controller. The power converting circuit is electrically connected to the one or multiple LED chip sets for receiving an input power and converting the input power into a regulated output voltage or current required for illuminating the one or multiple LED chip sets. The one or multiple switching elements electrically connected to the one or multiple LED chip sets. The controller is electrically connected to the switching elements for controlling alternate or combined simultaneous/alternate switching on/off statuses of the one or multiple switching elements, so that the one or multiple LED chip sets emit light in an alternate lighting manner or a combined simultaneous/alternate lighting manner to reduce the operating temperatures of the one or multiple LED chip sets.
Abstract:
A lighting string controller includes a power supply circuit that converts an alternate current (AC) input into a direct current (DC) output and includes an impedance buck circuit for expanding the applicable voltage range of the AC input and supplying a stable DC power to a display control circuit, a drive circuit and at least one lighting string. The display control circuit operates the lighting string through the drive circuit and the display control circuit controls time period within which the lighting string is in full lighting condition to allow a lighting string that is of a high power consumption to fully light in a short period of time. The display control circuit also functions to control operation modes of the lighting string, including lighting ON/OFF, interrupted lighting, gradually brightening/dimming, cyclic lighting, and alternating loop flashing, and can be controlled by a control switch or a remote control to switch among the operation modes. As such, a lighting string controller that is free of transformer and that is compact is size is realized.
Abstract:
A liquid-proof enclosure includes first and second casing members engaging each other to define an interior space for receiving, retaining and protecting an electrical device. Each casing member has a mating flange engaging each other to encase the electrical device. A rib is formed along the mating flange of the first casing member and a corresponding slot is defined along the mating flange of the second casing member for receiving and engaging the rib thereby attaching the first and second casing members together and increasing length of a possible leakage path between the first and second casing members. An opening is defined between the first and second casing members. At least a circumferential slot is defined along a circumferential wall of the opening. A cable retainer retaining a cable forms ribs received in the slot of the opening for attaching the cable retainer to the first and second casing members and to prevent liquid leakage into the enclosure.
Abstract:
A limiting current circuit that has output short circuit protection is connected to an external voltage source and comprises an output terminal, an input current unit, a driving transistor, a voltage control resistor, a voltage control transistor and a delay unit. The output terminal is connected to a load and has an output current. The driving transistor has an internal resistance, a drain current and a gate voltage. The voltage control resistor has a resistor voltage. The voltage control transistor has an internal resistance and a parasitic capacitance. The delay unit makes the resistor voltage charging the parasitic capacitance to extend the period of lower internal resistance of the voltage control transistor and the period of higher internal resistance of the driving transistor, makes the internal resistance of the voltage control transistor is less than the internal resistance of the driving transistor when the load is shorted.
Abstract:
The invention provides a light emitting device driving circuit, comprising a rectification unit, a current limiting unit and a load. The load comprises a first light emitting device, a reverse voltage providing unit and a second light emitting device connected in serial. When the rectification unit rectifies an alternate current voltage to output a direct current voltage, and the current limiting unit limits the direct current in a predetermined value, the direct current is provided to the first light emitting device or the second light emitting device for operation. The reverse voltage providing unit provides a reverse voltage to reduce the total operating voltage of the light emitting devices in order to enhance the driving efficiency and the power factor.
Abstract:
A limiting current circuit that has output short circuit protection is connected to an external voltage source and comprises an output terminal, an input current unit, a driving transistor, a voltage control resistor, a voltage control transistor and a delay unit. The output terminal is connected to a load and has an output current. The driving transistor has an internal resistance, a drain current and a gate voltage. The voltage control resistor has a resistor voltage. The voltage control transistor has an internal resistance and a parasitic capacitance. The delay unit makes the resistor voltage charging the parasitic capacitance to extend the period of lower internal resistance of the voltage control transistor and the period of higher internal resistance of the driving transistor, makes the internal resistance of the voltage control transistor is less than the internal resistance of the driving transistor when the load is shorted.
Abstract:
A driving circuit for light emitting elements comprises a rectifying unit, a first constant current unit, a first driving transistor, a first voltage control unit and at least one first light emitting element. The rectifying unit has a first terminal and a second terminal, is connected to an external power source that provides alternating current power that is sinusoidal and has alternating negative and positive segments, inverts the negative segments of the AC power to positive segments and forms a pulsating direct current voltage. The first constant current unit has a first end and a second end. The first driving transistor comprises a first gate, a first drain and a first source. The first voltage control unit comprises a first variable resistor and a first bias control element. The first light emitting element has a first end and a second end.
Abstract:
The invention provides a light emitting device driving circuit, comprising a rectification unit, a current limiting unit and a load. The load comprises a first light emitting device, a reverse voltage providing unit and a second light emitting device connected in serial. When the rectification unit rectifies an alternate current voltage to output a direct current voltage, and the current limiting unit limits the direct current in a predetermined value, the direct current is provided to the first light emitting device or the second light emitting device for operation. The reverse voltage providing unit provides a reverse voltage to reduce the total operating voltage of the light emitting devices in order to enhance the driving efficiency and the power factor.